首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present in this paper various links between individual and population cell growth. Deterministic models of the lag and subsequent growth of a bacterial population and their connection with stochastic models for the lag and subsequent generation times of individual cells are analysed. We derived the individual lag time distribution inherent in population growth models, which shows that the Baranyi model allows a wide range of shapes for individual lag time distribution. We demonstrate that individual cell lag time distributions cannot be retrieved from population growth data. We also present the results of our investigation on the effect of the mean and variance of the individual lag time and the initial cell number on the mean and variance of the population lag time. These relationships are analysed theoretically, and their consequence for predictive microbiology research is discussed.  相似文献   

2.
Meng Xu 《Oikos》2016,125(3):288-299
Scaling research has seen remarkable progress in the past several decades. Many scaling relationships were discovered within and across individual and population levels, such as species–abundance relationship, Taylor's law, and density mass allometry. However none of these established patterns incorporate individual variation in the formulation. Individual body size variation is a key evolutionary phenomenon and closely related to ecological diversity and species adaptation. Using a macroecological approach, I test 57 Long‐Term Ecological Research data sets and show that a power‐law and a generalized power‐law function describe well the mean‐variance scaling of individual body mass. This relationship connects Taylor's law and density mass allometry, and leads to a new scaling pattern between the individual body size variation and population abundance fluctuation, which is confirmed using freshwater fish and forest tree data. Underlying mechanisms and implications of the proposed scaling relationships are discussed. This synthesis shows that integration and extension of existing ecological laws can lead to the discovery of new scaling patterns and complete our understanding of the relation between individual trait and population abundance. Synthesis Scaling relationships are useful for community ecology as they reveal ubiquitous patterns across different levels of biological organizations. This work extends and integrates two existing scaling laws: Taylor's law and density‐mass allometry, and derives a new variance allometry between individual body mass and population abundance. The result shows that diverse individual body size is associated with stable population fluctuation, reflecting the effect of individual traits on population characteristics. Confirmed by several empirical data sets, these scaling relationships suggest new ways to study the underlying mechanisms of Taylor's law and have profound implications for fisheries and other applied sciences.  相似文献   

3.
Papadopoulos A 《PloS one》2011,6(9):e25267

Background

In the absence of stochasticity, allometric growth throughout ontogeny is axiomatically described by the logarithm-transformed power-law model, , where and are the logarithmic sizes of two traits at any given time t. Realistically, however, stochasticity is an inherent property of ontogenetic allometry. Due to the inherent stochasticity in both and , the ontogenetic allometry coefficients, and k, can vary with t and have intricate temporal distributions that are governed by the central and mixed moments of the random ontogenetic growth functions, and . Unfortunately, there is no probabilistic model for analyzing these informative ontogenetic statistical moments.

Methodology/Principal Findings

This study treats and as correlated stochastic processes to formulate the exact probabilistic version of each of the ontogenetic allometry coefficients. In particular, the statistical dynamics of relative growth is addressed by analyzing the allometric growth factors that affect the temporal distribution of the probabilistic version of the relative growth rate, , where is the expected value of the ratio of stochastic to stochastic , and and are the numerator and the denominator of , respectively. These allometric growth factors, which provide important insight into ontogenetic allometry but appear only when stochasticity is introduced, describe the central and mixed moments of and as differentiable real-valued functions of t.

Conclusions/Significance

Failure to account for the inherent stochasticity in both and leads not only to the miscalculation of k, but also to the omission of all of the informative ontogenetic statistical moments that affect the size of traits and the timing and rate of development of traits. Furthermore, even though the stochastic process and the stochastic process are linearly related, k can vary with t.  相似文献   

4.
The Rosenzweig-MacArthur predator-prey model is the building block in modeling food chain, food webs and ecosystems. There are a number of hidden assumptions involved in the derivation. For instance the prey population growth is logistic without predation but also with predation. In order to reveal these we will start with modelling a resource-predator-prey system in a closed spatially homogeneous environment. This allows us to keep track of the nutrient flow. With an instantaneous remineralisation of the products excreted in the environment by the populations and dead body mass there is conservation of mass. This allows for a model dimension reduction and yields the mass balance predator-prey model. When furthermore the searching and handling processes are much faster that the population changing rates, the trophic interaction is described by a Holling type II functional response, also assumed in the Rosenzweig-MacArthur model. The derivation uses an extended deterministic model with number of searching and handling predators as model variables where the ratio of the predator/prey body masses is used as a mechanistic time-scale parameter. This extended model is also used as a starting point for the derivation of a stochastic model. We will investigate the stochastic effects of random switching between searching and handling of the predators and predator dying. Prey growth by consumption of ambient resources is still deterministic and therefore the stochastic model is hybrid. The transient dynamics is studied by numerical Monte Carlo simulations and also the quasi-equilibrium distribution for the population quantities is calculated. The body mass of the prey individual is the scaling parameter in the stochastic model formulation. This allows for a quantification of the mean-field approximation criterion for the justification of replacement of the stochastic by a deterministic model.  相似文献   

5.
We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.  相似文献   

6.
Taking into account the individual growth form (allometry) in a plant population and the effects of intraspecific competition on allometry under the population self-thinning condition, and adopting Ogawa's allometric equation 1/y = 1/axb + 1/c as the expression of complex allometry, the generalized model describing the change mode of r (the self-thinning exponential in the self-thinning equation, log M = K + log N, where M is mean plant mass, K is constant, and N is population density) was constructed. Meanwhile, with reference to the changing process of population density to survival curve type B, the exponential, r, was calculated using the software MATHEMATICA 4.0. The results of the numerical simulation show that (1) the value of the self-thinning exponential, r, is mainly determined by allometric parameters; it is most sensitive to change of b of the three allometric parameters, and a and c take second place; (2) the exponential, r, changes continuously from about -3 to the asymptote -1; the slope of -3/2 is a transient value in the population self-thinning process; (3) it is not a 'law' that the slope of the self-thinning trajectory equals or approaches -3/2, and the long-running dispute in ecological research over whether or not the exponential, r, equals -3/2 is meaningless. So future studies on the plant self-thinning process should focus on investigating how plant neighbor competition affects the phenotypic plasticity of plant individuals, what the relationship between the allometry mode and the self-thinning trajectory of plant population is and, in the light of evolution, how plants have adapted to competition pressure by plastic individual growth.  相似文献   

7.
A population of cells in culture displays a range of phenotypic responses even when those cells are derived from a single cell and are exposed to a homogeneous environment. Phenotypic variability can have a number of sources including the variable rates at which individual cells within the population grow and divide. We have examined how such variations contribute to population responses by measuring cell volumes within genetically identical populations of cells where individual members of the population are continuously growing and dividing, and we have derived a function describing the stationary distribution of cell volumes that arises from these dynamics. The model includes stochastic parameters for the variability in cell cycle times and growth rates for individual cells in a proliferating cell line. We used the model to analyze the volume distributions obtained for two different cell lines and one cell line in the absence and presence of aphidicolin, a DNA polymerase inhibitor. The derivation and application of the model allows one to relate the stationary population distribution of cell volumes to extrinsic biological noise present in growing and dividing cell cultures.  相似文献   

8.
YAMAKURA  T. 《Annals of botany》1984,53(5):611-624
The growth of mean individual weight is the joint outcome ofthe growth of the individuals comprising a population. Fromthe growth data of individual weight in radish (Raphanus sativusL. var. radiculus Pers.) populations cultivated at differentconcentrations of ammonium sulphate solution, a deterministicmodel was proposed for integrating individual plant weight intomean weight per plant in a population. The model constructiondepended on the relation between mean individual weight andthe amount of fertilizer supplied to a population, and uponPearson's type VII distribution. The model related the weightof any individual to the amount of fertilizer. The fitness ofthe model to observed data was satisfactory, although the modelwas simple. Using the model, properties of the growth of componentindividuals of a population were examined in relation to thegrowth of mean individual weight. fertilizer, growth, individual, mean, Pearson's type VII distribution, plant weight, population, radish, Raphanus sativus L. var. radicula Pers  相似文献   

9.
Comparative studies of gyrodactylid monogeneans on different host species or strains rely upon the observation of growth on individual fish maintained within a common environment, summarised using maximum likelihood statistical approaches. Here we describe an agent-based model of gyrodactylid population growth, which we use to evaluate errors due to stochastic reproductive variation in such experimental studies. Parameters for the model use available fecundity and mortality data derived from previously published life tables of Gyrodactylus salaris, and use a new data set of fecundity and mortality statistics for this species on the Neva stock of Atlantic salmon, Salmo salar. Mortality data were analysed using a mark-recapture analysis software package, allowing maximum-likelihood estimation of daily survivorship and mortality. We consistently found that a constant age-specific mortality schedule was most appropriate for G. salaris in experimental datasets, with a daily survivorship of 0.84 at 13°C. This, however, gave unrealistically low population growth rates when used as parameters in the model, and a schedule of constantly increasing mortality was chosen as the best compromise for the model. The model also predicted a realistic age structure for the simulated populations, with 0.32 of the population not yet having given birth for the first time (pre-first birth). The model demonstrated that the population growth rate can be a useful parameter for comparing gyrodactylid populations when these are larger than 20-30 individuals, but that stochastic error rendered the parameter unusable in smaller populations. It also showed that the declining parasite population growth rate typically observed during the course of G. salaris infections cannot be explained through stochastic error and must therefore have a biological basis. Finally, the study showed that most gyrodactylid-host studies of this type are too small to detect subtle differences in local adaptation of gyrodactylid monogeneans between fish stocks.  相似文献   

10.
 In this paper we propose a general framework for discrete time one-dimensional Markov population models which is based on two fundamental premises in population dynamics. We show that this framework incorporates both earlier population models, like the Ricker and Hassell models, and experimental observations concerning the structure of density dependence. The two fundamental premises of population dynamics are sufficient to guarantee that the model will exhibit chaotic behaviour for high values of the natural growth and the density-dependent feedback, and this observation is independent of the particular structure of the model. We also study these models when the environment of the population varies stochastically and address the question under what conditions we can find an invariant probability distribution for the population under consideration. The sufficient conditions for this stochastic stability that we derive are of some interest, since studying certain statistical characteristics of these stochastic population processes may only be possible if the process converges to such an invariant distribution. Received 15 May 1995; received in revised form 17 April 1996  相似文献   

11.
In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the low end representing the "off" state, and the other at the high end representing the "on" state for a given concentration of the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal distributions indicating two different populations, one in the "off" state and the other in the "on" state. The bimodal distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population altering the extracellular concentration in the environment of individual cells and hence their behavior can only be accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between the population and its environment. In this study, we show how to formulate a population balance model in which stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a population balance model.  相似文献   

12.
The importance of allometry as an analytic tool is well recognized in the literature of primate morphology. However, a number of recent studies have illustrated how interpretive difficulties can arise when researchers confound different types of allometric data. Such confusion is due less to carelessness than to uncertainty about how different types of allometry are related. The present study examines the relationship between two types—ontogenetic and interspecific allometry–in the case of organ weight scaling in six species of Old World monkeys. Accepting the interpretation of interspecific allometry as a reflection of functional scaling constraints, the results of this analysis indicate how ontogenetic patterns have been modified in different-sized species to maintain compliance with these constraints. Specifically, for the heart and lungs it appears that vertical transpositions of individual species' ontogenies are dictated by isometric interspecific allometry, while in the case of the kidneys and liver, the relation of negative allometry across species entails alteration of the relative growth coefficients of the individual species. While these conclusions can at present only be applied to organ weight scaling, the approach of examining interspecific patterns in light of developmental differences between species should prove very helpful in our efforts to understand the phenomena of size and scaling.  相似文献   

13.
14.
Considerable progress has been made in the nutritional modelling of growth. Most models typically predict (or analyse) the response of a single animal. However, the response to nutrients of a single, representative animal is likely to be different from the response of the herd. To address the variation in response between animals, a stochastic approach towards nutritional modelling is required. In the present study, an analysis method is presented to describe growth and feed intake curves of individual pigs within a population of 192 pigs. This method was developed to allow end-users of InraPorc (a nutritional model predicting and analysing growth in pigs) to easily characterise their animals based on observed data and then use the model to test different scenarios. First, growth and intake data were curve-fitted to characterise individual pigs in terms of BW (Gompertz function of age) and feed intake (power function of BW) by a set of five parameters, having a biological or technico-economical meaning. This information was then used to create a population of virtual pigs in InraPorc, having the same feed intake and growth characteristics as those observed in the population. After determination of the mean lysine (Lys) requirement curve of the population, simulations were carried out for each virtual pig using different feeding strategies (i.e. 1, 2, 3 or 10 diets) and Lys supply (ranging from 70% to 130% of the mean requirement of the population). Because of the phenotypic variation between pigs and the common feeding strategies that were applied to the population, the Lys requirement of each individual pig was not always met. The percentage of pigs for which the Lys requirement was met increased concomitantly with increasing Lys supply, but decreased with increasing number of diets used. Simulated daily gain increased and feed conversion ratio decreased with increasing Lys supply (P < 0.001) according to a curvilinear-plateau relationship. Simulated performance was close to maximum when the Lys supply was 110% of the mean population requirement and did not depend on the number of diets used. At this level of Lys supply, the coefficient of variation of simulated daily gain was minimal and close to 10%, which appears to be a phenotypic characteristic of this population. At lower Lys supplies, simulated performance decreased and variability of daily gain increased with an increasing number of diets (P < 0.001). Knowledge of nutrient requirements becomes more critical when a greater number of diets are used. This study shows the limitations of using a deterministic model to estimate the nutrient requirements of a population of pigs. A stochastic approach can be used provided that relationships between the most relevant model parameters are known.  相似文献   

15.
In nature, individual reproductive success is seldom independent from year to year, due to factors such as reproductive costs and individual heterogeneity. However, population projection models that incorporate temporal autocorrelations in individual reproduction can be difficult to parameterise, particularly when data are sparse. We therefore examine whether such models are necessary to avoid biased estimates of stochastic population growth and extinction risk, by comparing output from a matrix population model that incorporates reproductive autocorrelations to output from a standard age‐structured matrix model that does not. We use a range of parameterisations, including a case study using moose data, treating probabilities of switching reproductive class as either fixed or fluctuating. Expected time to extinction from the two models is found to differ by only small amounts (under 10%) for most parameterisations, indicating that explicitly accounting for individual reproductive autocorrelations is in most cases not necessary to avoid bias in extinction estimates.  相似文献   

16.
The von Bertalanffy growth curve has been commonly used for modeling animal growth (particularly fish). Both deterministic and stochastic models exist in association with this curve, the latter allowing for the inclusion of fluctuations or disturbances that might exist in the system under consideration which are not always quantifiable or may even be unknown. This curve is mainly used for modeling the length variable whereas a generalized version, including a new parameter b≥1, allows for modeling both length and weight for some animal species in both isometric (b=3) and allometric (b≠3) situations.In this paper a stochastic model related to the generalized von Bertalanffy growth curve is proposed. This model allows to investigate the time evolution of growth variables associated both with individual behaviors and mean population behavior. Also, with the purpose of fitting the above-mentioned model to real data and so be able to forecast and analyze particular characteristics, we study the maximum likelihood estimation of the parameters of the model. In addition, and regarding the numerical problems posed by solving the likelihood equations, a strategy is developed for obtaining initial solutions for the usual numerical procedures. Such strategy is validated by means of simulated examples. Finally, an application to real data of mean weight of swordfish is presented.  相似文献   

17.
A stochastic microbial growth model has been elaborated in the case of the culture of E. coli in fed-batch and scale-down reactors. This model is based on the stochastic determination of the generation time of the microbial cells. The determination of generation time is determined by choosing the appropriate value on a log-normal distribution. The appropriateness of such distribution is discussed and growth curves are obtained that show good agreement compared with the experimental results. The mean and the standard deviation of the log-normal distribution can be considered to be constant during the batch phase of the culture, but they vary when the fed-batch mode is started. It has been shown that the parameters related to the log-normal distribution are submitted to an exponential evolution. The aim of this study is to explore the bioreactor hydrodynamic effect on microbial growth. Thus, in a second time, the stochastic growth model has been reinforced by data coming from a previous stochastic bioreactor mixing model (1). The connection of these hydrodynamic data with the actual stochastic growth model has allowed us to explain the scale-down effect associated with the glucose concentration fluctuations. It is important to point out that the scale-down effect is induced differently according to the feeding strategy involved in the fed-batch experiments.  相似文献   

18.
Stochastic parametrization of growth heterogeneity was applied to investigate the distribution of vertebral band radius-at-age in three populations of gummy shark Mustelus antarcticus Günther harvested with very different fishing effort and different mesh-sizes of gillnet. Three examples of four parameter growth models were developed where the random von Bertalanffy growth rate K is represented alternatively by three positive distributions to avoid negative tails in size-at-age distribution. Models with gamma and log-normal distributions of K fitted the data equally well and both fitted better than a model with the Weibull distribution. Various results are presented from the model developed with the gamma distribution of K. Heterogeneity in vertebral growth is presented as a series of quantiles of distribution of band radius-at-age. Probability density functions of band radius are presented for sharks at four selected ages, and cross-sections of these probability densities against age are presented for three selected values of band radius. Heterogeneity of growth rate K in a population is presented as tables of 10% quantiles and as graphs of probability densities. The differences in the patterns of vertebral growth for male and female sharks separately, between Bass Strait during 1973–1976, Bass Strait during 1986–1987 and South Australia during 1986–1987 are generally consistent with those determined from shark length-at-age in other published studies. However, the stochastic modelling approach adopted in the present study avoids having to make any assumptions about vertebral growth patterns of individual sharks and embraces heterogeneity in vertebral radius-at-age in the models which allows for better evaluation of alternative hypotheses for explaining the observed differences in growth patterns.  相似文献   

19.
Log-normal variation belts for growth curves   总被引:1,自引:0,他引:1  
Prediction (confidence) or tolerance belts compound the uncertainty of sample estimates with the estimated extent of individual variation. The latter is therefore better described by variation belts, in which sample estimates are simply substituted for population parameters. Variation belts can provide valuable graphical indications concerning the goodness of fit of postulated error models. While multiplicative least-squares (MLS) methods appear appropriate in principle for biological growth, they are unsatisfactory in practice when logarithmically transformed data are heteroscedastic. Heteroscedastic multiplicative error models can be fitted by iteratively reweighted multiplicative least squares (IRMLS), but unacceptable negative or infinite residual variance estimates and unreasonably wide variation belts are occasionally obtained. These difficulties can be prevented by constrained iteratively reweighted multiplicative least squares (CIRMLS). Examples are presented concerning the metabolic allometry of white rats, the somatic growth of male elephant seals, and the growth of an experimental population of Paramecium caudatum.  相似文献   

20.
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号