首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Submandibular secretory and vascular responses to stimulation of the parasympathetic innervation and the output of vasoactive intestinal peptide (VIP) were investigated in anaesthetized sheep in the presence and absence of atropine (>/=0.5 mg/kg). In the absence of atropine, parasympathetic stimulation caused an increase in the flow of saliva and a decrease in submandibular vascular resistance; the latter response persisted after the administration of atropine and was then significantly reduced at the lowest but not at the higher frequencies tested. The output of VIP from the gland was frequency dependent over the range of 10-20 Hz (continuously) and significantly increased after atropine (P < 0.02). Furthermore, the fall in vascular resistance was linearly related to log VIP output after total muscarinic blockade. Intracarotid infusions of synthetic VIP produced dose-dependent falls in submandibular vascular resistance, together with a corresponding increase in submandibular blood flow. It is concluded that the atropine-resistant vasodilatation that occurs in this gland during parasympathetic stimulation is likely to be due largely, if not entirely, to the release of VIP.  相似文献   

2.
VIP and noncholinergic vasodilatation in rabbit submandibular gland   总被引:1,自引:0,他引:1  
The effect of parasympathetic nerve activation on rabbit submandibular gland (SMG) blood flow and saliva secretion were studied before and after systemic administration of atropine or hexamethonium. The parasympathetic fibers were stimulated electrically (2 and 15 Hz, 10 V, 1 msec) at the plexus around the submandibular salivary duct or at the chorda lingual nerve. In untreated animals, stimulation of parasympathetic fibers caused a frequency-dependent increase of salivary secretion and blood flow in the SMG. Atropine treatment completely abolished saliva secretion at 2 Hz and 15 Hz and the increase in SMG blood flow during stimulation at 2 Hz. Although atropine significantly reduced the vasodilatory response at 15 Hz, the highest blood flow measured under such circumstances was still about 2.5 times the prestimulation value. After hexamethonium administration no blood flow increase or saliva secretion was seen upon chorda lingual stimulation. The concentration of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the venous effluent of the SMG increased during nerve stimulation. Atropine significantly reduced, and hexamethonium abolished this VIP-output elicited by parasympathetic nerve stimulation. Local infusion of VIP, peptide histidine isoleucine (PHI) and substance P all caused atropine-resistant vasodilation but no salivation. The present data suggest that VIP and possibly PHI play a role in the atropine-resistant vasodilatation in rabbit submandibular gland elicited by parasympathetic nerve stimulation. The contribution of sensory mediators such as substance P released by stimulation of afferent nerves in the chorda lingual nerve to the salivary and vasodilatory responses seems to be of minor importance in the rabbit submandibular gland.  相似文献   

3.
The atrial volume reflex is attenuated in pregnancy. This may be mimicked by chronic administration of 5alpha-pregnan-3alpha-ol-20-one (pregnan). We investigated whether afferent output from sensory receptors may be suppressed at this time. Vagal afferent nerve activity was measured during discrete localized stimulation of the atrial volume receptors by inflation of a balloon at the superior vena caval-right atrial junction. The receptors were classified as high- (HF) or low- (LF) frequency subtypes on the basis of their response to graded atrial distension. Although both HF (regression coefficient = 0.50 +/- 0.11 Hz/microl, r(2) = 0.47, P < 0.001) and LF (regression coefficient = 0.03 +/- 0.05 Hz/microl, r(2) = 0.009, P = 0.613) subtypes could be identified in virgin rats, only LF (regression coefficient = 0.09 +/- 0.05 Hz/microl, r(2) = 0.044, P = 0.099) receptors were found in late-pregnant animals. Similarly, in virgin rats treated chronically with pregnan (500 microg/24 h for 2 days), only LF receptors were identified (regression coefficient = -0.004 +/- 0.078 Hz/microl, r(2) = 0.000, P = 0.962), whereas both subtypes were present in the vehicle-treated animals (HF regression coefficient = 0.626 +/- 0.255 Hz/microl, r(2) = 0.317, P = 0.029; LF regression coefficient = -0.012 +/- 0.071 Hz/microl, r(2) = 0.002, P = 0.866). By contrast, acute intracardiac pregnan (2.6 microg/kg) did not alter vagal afferent nerve activity. In conclusion, stretch-induced discharge of high-frequency atrial receptors is suppressed during pregnancy, whereas that of low-frequency receptors is preserved. This effect may be mimicked by chronic, but not acute, pregnan. We propose that, during pregnancy, pregnan alters the transducer properties of the atrial volume receptors, thus allowing blood volume to increase.  相似文献   

4.
Submandibular vascular and secretory responses to parasympathetic chorda-lingual (C-L) stimulation were investigated in anesthetized sheep before, during, and after an intracarotid (ic) infusion of endothelin-1 (ET-1). Stimulation of the peripheral end of the C-L nerve at 4 and 8 Hz produced a frequency-dependent reduction in submandibular vascular resistance (SVR) associated with a frequency-dependent increase in submandibular blood flow, salivary flow, and Na+, K+, and protein output from the gland. During stimulation at 4 Hz, ic ET-1 significantly increased SVR (P < 0.01), without significantly affecting either the aortic blood pressure or heart rate. Submandibular blood flow (SBF) was reduced by 48 +/- 4% and the flow of saliva by 50 +/- 1%. The effect on blood and salivary flow persisted for at least 30 min after the infusion of ET-1. The reduction in SBF was associated with a diminution in the output of Na+,K+, and protein in the saliva (P < 0.01). These effects persisted for 30 min after the infusion of ET-1 had been discontinued and were linearly related to the flow of plasma throughout.  相似文献   

5.
Submandibular secretory responses to stimulation of the parasympathetic chorda-lingual nerve in anaesthetized cats have been investigated before, during, and after intracarotid infusion of endothelin-1 (ET-1), which reduced blood flow through the gland by 64+/-7%. Stimulation at different frequencies (2, 4, 8, and 16 Hz) evoked a frequency-dependent increase in the flow of submandibular saliva, sodium concentration and output, and output of both potassium and protein. The reduction in submandibular blood flow, which occurred in response to the infusion of ET-1, was associated with a decreased flow of saliva and a diminished output of both sodium and protein. The flow of saliva was linearly related to submandibular blood flow both in the presence and absence of ET-1. It is concluded that submandibular secretory responses to electrical stimulation of the parasympathetic innervation can be significantly attenuated by reducing the blood flow through the gland by ET-1 infusion, just as it is when the blood flow is reduced by hypotension.  相似文献   

6.
We have investigated whether prejunctional inhibitory muscarinic receptors ("autoreceptors") exist on cholinergic nerves in human airways in vitro and whether guinea pig trachea provides a good model for further pharmacological characterization of these receptors. Pilocarpine was used as a selective agonist and gallamine as a selective antagonist of these autoreceptors. Acetylcholine (ACh) release from postganglionic cholinergic nerves was elicited by electrical field stimulation (EFS) (40 V, 0.5 ms, 32 Hz). In human bronchi, pilocarpine inhibited the contractile response to EFS in a dose-related fashion; the dose inhibiting 50% of the control contraction was 2.2 +/- 0.4 x 10(-7) (SE) M (n = 22), and the inhibition was 96% at 3 x 10(-5) M. The inhibitory effects of pilocarpine were antagonized by gallamine in a dose-related fashion. The results were qualitatively the same in the guinea pig. Gallamine significantly enhanced the contractile response to EFS in the guinea pig, whereas pirenzepine failed to do so, which suggests that M2-receptors are involved. We conclude that prejunctional muscarinic receptors that inhibit ACh release are present on cholinergic nerves in human airways and that guinea pig trachea is a good model for further pharmacological characterization of these receptors, which appear to belong to the M2-subtype.  相似文献   

7.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.  相似文献   

8.
To determine whether prostaglandin D2 (PGD2) modulates cholinergic neurotransmission in airway smooth muscle and, if so, what the mechanism of action is, we studied bronchial segments from dogs under isometric conditions in vitro. PGD2 (10(-8)-10(-5) M) elicited dose-dependent muscle contraction, which was reduced after blockade of muscarinic receptors, so that 50% effective dose (ED50) increased from 1.3 +/- 0.3 X 10(-6) to 3.9 +/- 1.0 X 10(-6) M by atropine (10(-6) M) (mean +/- SE, P less than 0.05). Physostigmine, at a concentration insufficient to alter base-line tension (10(-8) M), enhanced the PGD2-induced contraction and decreased ED50 to 6.4 +/- 0.5 X 10(-7) M (P less than 0.05). When added at the highest doses that did not cause spontaneous contraction (1.9 +/- 0.5 X 10(-7) M), PGD2 increased the contractile response to electrical field stimulation (1-50 Hz) by 21.9 +/- 6.6% (P less than 0.001). In contrast to this effect, the response to administered acetylcholine was not affected by PGD2. On the other hand, PGD2-induced augmentation of the response to electrical field stimulation (5 Hz) was further increased from 23.6 +/- 3.0 to 70.4 +/- 8.8% in the presence of physostigmine (10(-8) M) and was abolished by atropine but not affected by the alpha-adrenergic antagonist phentolamine or the histamine H1-blocker pyrilamine. These results suggest that the contraction of airway smooth muscle induced by PGD2 is in in part mediated by a cholinergic action and that PGD2 prejunctionally augments the parasympathetic contractile response, likely involving the accelerated release of acetylcholine at the neuromuscular junction.  相似文献   

9.
Recent studies show i.v. administered pentagastrin and cholecystokinin to evoke protein/amylase secretion from the rat parotid gland and to stimulate gland protein synthesis, the two phenomena being abolished by cholecystokinin receptor antagonists. In the rat parotid gland, non-adrenergic, non-cholinergic transmission mechanisms contribute to secretion of fluid and protein/amylase. Since cholecystokinin may act as a neurotransmitter, activation of cholecystokinin receptors of the gland might contribute to the parasympathetic nerve-evoked secretion. In this study, the parasympathetic innervation was stimulated in non-atropinized (in periods of 2 min) or atropinized (in periods of 3 min) pentobarbitone-anaesthetized rats before and after administration of the cholecystokinin-A receptor antagonist lorglumide (48 mg/kg, i.v.) and the cholecystokinin-B receptor antagonist itriglumide (5.5 mg/kg, i.v.). The non-adrenergic, non-cholinergic transmission fatigues rapidly resulting in declining responses. Therefore, atropinized rats, not receiving the cholecystokinin receptor antagonists, had to serve as controls. Neither at a stimulation frequency of 10 Hz nor of 40 Hz were the secretory responses of the atropinized rats affected by the receptor antagonists. After lorglumide, the saliva volume and the amylase output were (expressed as percentage of the response to the stimulation period before the administration of the antagonist) 98.0+/-3.8% (vs. control 91.1+/-4.0%) and 91.9+/-4.9% (vs. 87.7+/-3.7%) at 10 Hz, respectively, and 79.8+/-4.5% (vs. 77.3+/-2.1%) and 73.6+/-5.3% (vs. 71.7+/-2.3%) at 40 Hz, respectively. After itriglumide, the corresponding percentage figures for saliva volume and amylase output were, at 10 Hz, 99.5+/-8.9% (vs. 92.0+/-2.8%) and 95.8+/-11.8% (vs. 89.2+/-6.4%), respectively, and, at 40 Hz, 74.0+/-3.1% (vs. 79.6+/-2.2%) and 66.6+/-3.3% (vs. 63.9+/-6.0%), respectively. Similarly, the antagonists were without effect on the parotid secretory responses of non-atropinized rats subjected to stimulation at 10 Hz. Thus, under physiological conditions, the cholecystokinin receptors of the parotid gland are likely to be stimulated by circulating hormones rather than by nervous activity.  相似文献   

10.
In dogs tracheal secretion is enhanced reflexly and by locally acting mediators such as substance P (SP). To evaluate the role of these mechanisms on submucosal gland secretion in the larynx (L) and pharynx (Ph), we compared the effects of mechanical stimulation of intrapulmonary irritant receptors and stimulation of pulmonary C-fiber receptors by capsaicin (20 micrograms/kg iv) with the response produced by intravenous SP. In six alpha-chloralose-anesthetized, paralyzed, and artificially ventilated dogs, submucosal gland secretion was monitored by analyzing the areas covered by hillocks of liquid and calculating the volume of secreted liquid (microliter) in the L and Ph. Mechanical stimulation of the carina increased both the number of hillocks and the volume of secreted liquid in the L. Excitation of pulmonary C-fiber receptors also increased the number of hillocks, and total volume of secreted liquid was elevated from 1.9 +/- 0.5 to 8.3 +/- 1.4 microliters (P less than 0.01). These responses were significantly reduced by prior cervical vagotomy and intravenous administration of atropine. Neither stimulation of irritant receptors nor stimulation of pulmonary C-fiber receptors caused discernible effects on Ph submucosal gland secretion. However, intravenous SP increased the number of Ph hillocks and elevated the volume of secreted Ph liquid from 1.0 +/- 0.6 to 10.2 +/- 1 microliters (P less than 0.01); similar responses to intravenous SP were observed in the L. Prior intravenous administration of atropine methylnitrate or bilateral vagotomy did not alter Ph or L secretory responses to intravenous SP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Receptor characterization in human esophageal smooth muscle is limited by tissue availability. We used human esophageal smooth muscle cells in culture to examine the expression and function of muscarinic receptors. Primary cultures were established using cells isolated by enzymatic digestion of longitudinal muscle (LM) and circular muscle (CM) obtained from patients undergoing esophagectomy for cancer. Cultured cells grew to confluence after 10-14 days in medium containing 10% fetal bovine serum and stained positively for anti-smooth muscle specific alpha-actin. mRNA encoding muscarinic receptor subtypes M(1)-M(5) was identified by RT-PCR. The expression of corresponding protein for all five subtypes was confirmed by immunoblotting and immunocytochemistry. Functional responses were assessed by measuring free intracellular Ca(2+) concentration ([Ca(2+)](i)) using fura 2 fluorescence. Basal [Ca(2+)](i), which was 135 +/- 22 nM, increased transiently to 543 +/- 29 nM in response to 10 microM ACh in CM cells (n = 8). This response was decreased <95% by 0.01 microM 4-diphenylacetoxy-N-methylpiperidine, a M(1)/M(3)-selective antagonist, whereas 0.1 microM methoctramine, a M(2)/M(4)-selective antagonist, and 0.1 microM pirenzepine, a M(1)-selective antagonist, had more modest effects. LM and CM cells showed similar results. We conclude that human smooth muscle cells in primary culture express five muscarinic receptor subtypes and respond to ACh with a rise in [Ca(2+)](i) mediated primarily by the M(3) receptor and involving release of Ca(2+) from intracellular stores. This culture model provides a useful tool for further study of esophageal physiology.  相似文献   

12.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.  相似文献   

13.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.  相似文献   

14.
The muscarinic agonist oxotremorine-M produced a concentration-dependent increase in phosphoinositide hydrolysis in bovine pial arteries. The maximal effect was 5.9 +/- 0.89 fold over basal levels, and the EC50 for oxotremorine-M was 8.9 x 10(-6) M. The phosphoinositide response in arteries with the luminal endothelium removed was similar to the response in intact arteries. The specific muscarinic antagonists pirenzepine, 4-DAMP and methoctramine produced parallel shifts of the concentration-response curve to oxotremorine-M, with the following order of potency (pKB): 4-DAMP (8.59 +/- 0.10) greater than pirenzepine (8.12 +/- 0.11) greater than methoctramine (6.77 +/- 0.20). These results indicate that muscarinic stimulation activates phosphoinositide hydrolysis in cerebral arteries, and that the muscarinic receptors mediating this increase are similar to the M1 subtype.  相似文献   

15.
Central administration of the serotonin receptor ligand methysergide delays the decompensatory response to hypotensive hemorrhage. This study was performed to determine the receptor subtype that mediates this effect. Lateral ventricular (LV) injection of methysergide (40 microg) delayed the hypotensive, bradycardic, and sympathoinhibitory responses to blood withdrawal (1.26 ml/min) in conscious rats. The response was quantified, in part, as the blood volume withdrawal that produced a 40-mmHg fall in blood pressure. The delayed hypotensive response produced by methysergide (8.2 +/- 0.2 vs. 5.6 +/- 0.2 ml, P < 0.01) was reversed by the 5-hydroxytryptamine (HT)(1A) antagonist WAY-100635 (30 microg iv: 6.7 +/- 0.4 ml, P < 0. 01; 100 microg iv: 5.6 +/- 0.1 ml, P < 0.01). LV injection of the 5-HT(1A) agonist (+)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) also delayed the hypotensive (10 microg: 8.6 +/- 0.3, P < 0.01; 20 microg: 9.2 +/- 0.3 ml, P < 0.01), bradycardic, and sympathoinhibitory responses to hemorrhage. WAY-100635 (10 microg iv) completely reversed the effects of 8-OH-DPAT (20 microg: 5.4 +/- 0.3 ml). Neither selective blockade of 5-HT(2) receptors nor stimulation of 5-HT(1B/1D) receptors had any effect on hemorrhage responses. These data indicate that methysergide stimulates 5-HT(1A) receptors to delay the decompensatory responses to hemorrhage.  相似文献   

16.
Chemoreflex control of sympathetic nerve activity is exaggerated in heart failure (HF) patients. However, the vascular implications of the augmented sympathetic activity during chemoreceptor activation in patients with HF are unknown. We tested the hypothesis that the muscle blood flow responses during peripheral and central chemoreflex stimulation would be blunted in patients with HF. Sixteen patients with HF (49 +/- 3 years old, Functional Class II-III, New York Heart Association) and 11 age-paired normal controls were studied. The peripheral chemoreflex control was evaluated by inhalation of 10% O(2) and 90% N(2) for 3 min. The central chemoreflex control was evaluated by inhalation of 7% CO(2) and 93% O(2) for 3 min. Muscle sympathetic nerve activity (MSNA) was directly evaluated by microneurography. Forearm blood flow was evaluated by venous occlusion plethysmography. Baseline MSNA were significantly greater in HF patients (33 +/- 3 vs. 20 +/- 2 bursts/min, P = 0.001). Forearm vascular conductance (FVC) was not different between the groups. During hypoxia, the increase in MSNA was significantly greater in HF patients than in normal controls (9.0 +/- 1.6 vs. 0.8 +/- 2.0 bursts/min, P = 0.001). The increase in FVC was significantly lower in HF patients (0.00 +/- 0.10 vs. 0.76 +/- 0.25 units, P = 0.001). During hypercapnia, MSNA responses were significantly greater in HF patients than in normal controls (13.9 +/- 3.2 vs. 2.1 +/- 1.9 bursts/min, P = 0.001). FVC responses were significantly lower in HF patients (-0.29 +/- 0.10 vs. 0.37 +/- 0.18 units, P = 0.001). In conclusion, muscle vasodilatation during peripheral and central chemoreceptor stimulation is blunted in HF patients. This vascular response seems to be explained, at least in part, by the exaggerated MSNA responses during hypoxia and hypercapnia.  相似文献   

17.
Skeletal muscle blood flow increases rapidly with exercise onset, but little is known of where or how the rapid onset of vasodilation (ROV) is governed within the microcirculation. In the retractor muscle of anesthetized hamsters (n = 26), we tested the following: 1) where in the resistance network ROV occurred, 2) how microvascular responses were affected by the duration of contraction, and 3) whether ROV involved muscarinic receptor activation. Single tetanic contractions were evoked using supramaximal field stimulation (100 Hz) to depolarize motor end plates. In response to a 200-ms contraction, red blood cell (rbc) velocity (V(rbc)) in feed arteries (FA; rest: 17.8 +/- 2 mm/s) increased within 1 s; a transient first peak (P1; 50 +/- 7% increase) occurred at approximately 5 s; and a second peak (P2; 50 +/- 15% increase) occurred at approximately 15-20 s. For vasodilation, P1 increased in frequency from proximal FA (2/7) and 1A arterioles (2/7) to distal 2A (4/7) and 3A (7/8) arterioles (P < 0.05). Relative to resting (and maximal, 10 microM sodium nitroprusside) diameters, P1 increased from proximal (FA, 3 +/- 2% from 57 +/- 5 microm) to distal (3A, 27 +/- 6% from 14 +/- 1 microm) vessel branches (P < 0.05). P2 was manifest in all vessels and increased relative to resting diameters from FA (11 +/- 3%) to 3A (36 +/- 6%) branches (P < 0.01). Extending a contraction from 200 to 1,000 ms (tension x time integral from 17 +/- 2 to 73 +/- 4 mN/mm2 x s) increased P1 and P2 for V(rbc) and for diameter (P < 0.05) while reducing the time of onset for P2 (P < 0.05). Superfusion with atropine (10 microM) attenuated P1 of vasodilation (200 ms contraction) from 26 +/- 8% to 6 +/- 2% (n = 7 across branches; P < 0.05) and reduced the diameter x time integral by 46 +/- 13% (P < 0.05) without changing P2. We conclude that ROV in the hamster retractor muscle is initiated in distal arterioles, increases with the duration of muscle contraction, and involves muscarinic receptor activation.  相似文献   

18.
To evaluate the existence of functional renal dopaminergic innervation in the dog, we studied the effects of direct electrical stimulation of the renal nerves (RNS) with and without blockade of the dopamine receptor (DA1) that mediates the vasodilating and natriuretic response to intrarenal infusion of DA. Before infusion of the DA1 receptor antagonist, SCH 23390, RNS at 1 Hz did not change renal blood flow (RBF) but caused decreased urinary sodium excretion (-53 +/- 9%, P less than 0.01) and fractional excretion of sodium (-47 +/- 10%, P less than 0.01). Stimulation at 4 and 12 Hz elicited marked renal vasoconstriction (delta RBF = -37 +/- 12%, P less than 0.05 and -57 +/- 12%, P less than 0.01, respectively). When RNS (1 Hz) was performed during DA1 receptor blockade with SCH 23390, 0.5 microgram . kg-1 . min-1 iv, the responses were not different than those before SCh 23390 infusion (urinary sodium excretion: -54 +/- 7%, P less than 0.01 and fractional excretion of sodium: -46 +/- 5%, P less than 0.01). Renal vasoconstriction was also not influenced by SCH 23390 (delta RBF = -35 +/- 11%, P less than 0.05 during 4 Hz RNS and -58 +/- 12%, P less than 0.01 at 12 Hz RNS). Thus, the present study does not support the concept of functional dopaminergic innervation of the canine kidney.  相似文献   

19.
The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins.  相似文献   

20.
The aim of this study was to determine the contribution of neuropeptide Y (NPY) Y1 receptors in neurally mediated reductions in renal medullary perfusion. In pentobarbital sodium-anesthetized rabbits, electrical stimulation of the renal nerves (RNS, 0.5-16 Hz) decreased renal perfusion in a frequency-dependent manner. Under control conditions, 4 Hz reduced cortical and medullary perfusion by -85 +/- 3% and -43 +/- 7%, whereas 8 Hz reduced them by -93 +/- 2% and -73 +/- 4%, respectively. After Y1 receptor antagonism with BIBO3304TF (0.1 mg/kg plus 0.2 mg x kg x (-1) x h(-1)), RNS reduced perfusion less (by -65 +/- 9% and -12 +/- 8% at 4 Hz) x alpha1-Adrenoceptor antagonism with prazosin (0.2 mg/kg plus 0.2 mg kg(-1)h(-1)) also inhibited RNS-induced reductions in renal perfusion (-80 +/- 4% and -37 +/- 10% reductions in the cortex and medulla, respectively, at 8 Hz). When given after BIBO3304TF treatment, prazosin inhibited RNS-induced reductions in cortical and medullary perfusion more profoundly (-57 +/- 12% and -25 +/- 9% reductions, respectively, at 8 Hz) x Y1 receptor- and alpha1-adrenoceptor-blockade were confirmed by testing vascular responses to renal arterial NPY and phenylephrine boluses. NPY-positive immunolabeling was observed around interlobular arteries, afferent and efferent arterioles, and in the outer medulla. In conclusion, Y1 receptors and alpha1-adrenoceptors contribute to RNS-induced vasoconstriction in the vessels that control both cortical and medullary perfusion. Consistent with this, NPY immunostaining was associated with blood vessels that control perfusion in both regions. There also seems to be an interaction between Y1 receptors and alpha1-adrenoceptor-mediated neurotransmission in the control of renal perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号