首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4-6 microVRMS, such that extracellular potentials exceeding 40 microV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36-37 degrees C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.  相似文献   

2.
This paper reports on the development of a fully integrated 32-channel integrated circuit (IC) for recording neuronal signals in neurophysiological experiments using microelectrode arrays. The IC consists of 32 channels of low-noise preamplifiers and bandpass filters, and an output analog multiplexer. The continuous-time RC active filters have a typical passband of 20-2000 Hz; the low and the high cut-off frequencies can be separately controlled by external reference currents. This chip provides a satisfactory signal-to-noise ratio for neuronal signals with amplitudes greater than 50 microV. For the nominal passband setting, an equivalent input noise of 3 microV rms has been achieved. A single channel occupies 0.35 mm(2) of silicon area and dissipates 1.7 mW of power. The chip was fabricated in a 0.7 microm CMOS process.  相似文献   

3.
A novel peptidyl chemosensor (PySO2-His-Gly-Gly-Lys(PySO2)-NH2, 1) was synthesized by incorporation of two pyrene (Py) fluorophores into the tetrapeptide using sulfonamide group. Compound 1 exhibited selective fluorescence response towards Hg(II) over the other metal ions in aqueous buffered solutions. Furthermore, 1 with the potent binding affinity (Kd = 120 nM) for Hg(II) detected Hg(II) without interference of other metal ions such as Ag(I), Cu(II), Cd(II), and Pb(II). The binding mode of 1 with Hg(II) was investigated by UV absorbance spectroscopy, 1H NMR titration experiment, and pH titration experiment. The addition of Hg(II) induced a significant decrease in both excimer and monomer emissions of the pyrene fluorescence. Hg(II) interacted with the sulfonamide groups and the imidazole group of His in the peptidyl chemosensor and then two pyrene fluorophores were close to each other in the peptide. The decrease of both excimer and monomer emission was mainly due to the excimer/monomer emission change by dimerization of two pyrene fluorophores and a quenching effect of Hg(II).  相似文献   

4.
5.
6.
Neuronal activity has been recorded extracellularly from the medulla of anesthetized rats. Units whose discharge frequency varied in phase with respiratory airflow were located bilaterally between 1.5 and 2 mm lateral to midline, extending from 1 mm caudal to 1.5 mm rostral to the obex, in the ventral two-thirds of the medulla. Expiratory units predominated and were intermingled with inspiratory units. Ten different patterns of discharge were distinguished, varying from a short burst at the beginning of expiration to a resting discharge which increased in frequency during either inspiration or expiration. Evidence was also obtained that fiber tracts from other areas of the brain cross midline just caudally to the obex and pass to the respiratory centers on which they apparently exert and excitatory action.  相似文献   

7.
8.
The results of kinetic analysis of synaptosomal uptake of dopamine, noradrenaline, adrenaline and serotonin showed the presence of their own carrier systems with high or low affinity for each monoamine. The low affinity system of the uptake of monoamines by nerve endings differs from extraneuronal one by higher affinity. MPTP noncompetitively inhibits the system of highly effective uptake of the studied monoamines by nerve endings, competitively inhibiting synaptosomal uptake with low affinity of noradrenaline, adrenaline and noncompetitively serotonin and dopamine. The constant values of inhibition showed that MPTP most strongly blocks the system of synaptosomal uptake of low affinity serotonin and approximately 2-times weaker affects its system of high affinity. Carrier systems of high affinity of dopamine, adrenaline and noradrenaline block MPTP 150-500 times weaker than that of serotonin, and as for low affinity--in 2000-4000 times. It may be supposed that synaptosomal uptake of low affinity serotonin is most perceptible to the effect of MPTP and is of a particular importance in the development of Parkinson's disease symptoms.  相似文献   

9.
Microelectrode array (MEA) technology holds tremendous potential in the fields of biodetection, lab-on-a-chip applications, and tissue engineering by facilitating noninvasive electrical interaction with cells in vitro. To date, significant efforts at integrating the cellular component with this detection technology have worked exclusively with neurons or cardiac myocytes. We investigate the feasibility of using MEAs to record from skeletal myotubes derived from primary myoblasts as a way of introducing a third electrogenic cell type and expanding the potential end applications for MEA-based biosensors. We find that the extracellular action potentials (EAPs) produced by spontaneously contractile myotubes have similar amplitudes to neuronal EAPs. It is possible to classify myotube EAPs by biological signal source using a shape-based spike sorting process similar to that used to analyze neural spike trains. Successful spike-sorting is indicated by a low within-unit variability of myotube EAPs. Additionally, myotube activity can cause simultaneous activation of multiple electrodes, in a similar fashion to the activation of electrodes by networks of neurons. The existence of multiple electrode activation patterns indicates the presence of several large, independent myotubes. The ability to identify these patterns suggests that MEAs may provide an electrophysiological basis for examining the process by which myotube independence is maintained despite rapid myoblast fusion during differentiation. Finally, it is possible to use the underlying electrodes to selectively stimulate individual myotubes without stimulating others nearby. Potential uses of skeletal myotubes grown on MEA substrates include lab-on-a-chip applications, tissue engineering, co-cultures with motor neurons, and neural interfaces.  相似文献   

10.
Extracellular recording of neuronal spiking is the main method of investigation of involvement of neurons in behavioral tasks. Development of multichannel electrodes made it possible to simultaneously record activity of the same group of neurons from different locations in the brain tissue. That method allows the researches to distinguish spiking of simultaneously recorded neurons by individual set of projection coefficients of amplitude parameters on axes corresponding to different channels of the multichannel electrode. We tested the possibility of effective separation of single unit spiking streams from multiunit activity recorded by tetrode and subjected to different filtering. We described the main limitations for effective spike identification and determined the optimal band of signal filtering for tetrode recording.  相似文献   

11.
12.
13.
Three distinct groups of monoamine (MA)-containing nerve cell bodies have been visualized in the hypothalamus and preoptic area of the cat by means of the Falck-Hillarp fluorescence histochemical technique. First, numerous small-sized catecholamine (CA) type neurons were disclosed within the ventral half of the periventricular area in the supraoptic and middle hypothalamic regions. The round to oval neurons of this medio-ventral group were more especially abundant around the base of the third ventricle, within the arcuate and supraopticus diffusus nuclei. Numerous medium-sized CA perikarya identified as the dorsal group, were also mapped out in the dorsal and posterior hypothalamic areas. Finally, a small population of both CA and serotonin (5-hydroxytryptamine, 5-HT)-containing neurons was disclosed within the lateral area of the middle and mammillary hypothalamic regions. These multipolar or elongated neurons which compose the lateral group were lying either along the ventrolateral surface of the hypothalamus or around the ventrolateral aspect of the fornix. In addition to these three MA cell groups, a few cells displaying a fluorescence of the CA type were also visualized in the so-called “dorsal chiasmatic nucleus” after α-methyl-dopa treatment. High density of CA axon terminals were found, on the other hand, in the external layer of the median eminence, in the dorsomedial, paraventricular, supraoptic and suprachiasmatic nuclei, and also within nucleus interstitialis of stria terminalis. In the present study, however, it was not possible to identify with certainty any concentration of 5-HT axon terminals in the cat hypothalamus. Therefore, except for the lateral cell group which could be peculiar to the cat, the topographical distribution of MA nerve cell bodies and axon terminals in the hypothalamus of the cat appears similar to the morphological organization of the MA neuronal elements in the hypothalamus of the rat.  相似文献   

14.
Havir EA 《Plant physiology》1986,80(2):473-478
Different organs of maize seedlings are known to contain different complements of NADH and NAD(P)H nitrate reductase (NR) activity. The study of the genetic programming that gives rise to such differences can be initiated by looking for genetic variants exhibiting different patterns of distribution of the above enzymes. We demonstrate in this work that scutella of very young maize seedlings contain NADH NR almost exclusively and that this activity is gradually replaced, as the seedling ages, with NAD(P)H NR. Leaves in the seedlings contain exclusively the NADH NR activity. A genetic variant is described that contains much reduced levels of NAD(P)H NR activity but not of NADH NR activity in the scutellum. This same variant exhibits a relatively low level of NAD(P)H NR but normal NADH NR activity in seedling root tips. These observations suggest that the genetic program used to specify the scutellar complement of NR activity shares some common components with the genetic program used to determine the young root tip complement of NR activities. Parts of regenerating callus at different stages of differentiation were examined to determine when the differences in NR complement begin to appear. The same pattern of NADH NR and NAD(P)H NR activities was found in unorganized as well as in organized callus, in recognizable root-like and even in green shoot-like material, both activities being present in all these tissues. An examination of the NR complement in different organs of a number of siblings originating from a cross involving transposon Mu-containing parents and having different levels of leaf NADH NR activity shows that the leaf NADH NR activity content and the scutellum NAD(P)H NR activity content are relatively independent of each other, indicating that the genetic programs specifying the NR content of these organs are not tightly coupled, if at all.  相似文献   

15.
Interdigitated microelectrodes (IMEs) were used as impedance sensors for rapid detection of viable Salmonella typhimurium in a selective medium and milk samples. The impedance growth curves, impedance against bacterial growth time, were recorded at four frequencies (10Hz, 100Hz, 1kHz, and 10kHz) during the growth of S. typhimurium. The impedance did not change until the cell number reached 10(5)-10(6) CFUml(-1). The greatest change in impedance was observed at 10Hz. To better understand the mechanism of the IME impedance sensor, an equivalent electrical circuit, consisting of double layer capacitors, a dielectric capacitor, and a medium resistor, was introduced and used for interpreting the change in impedance during bacterial growth. Bacterial attachment to the electrode surface was observed with scanning electron microscopy, and it had effect on the impedance measurement. The detection time, t(D), defined as the time for the impedance to start change, was obtained from the impedance growth curve at 10Hz and had a linear relationship with the logarithmic value of the initial cell number of S. typhimurium in the medium and milk samples. The regression equations for the cell numbers between 4.8 and 5.4 x 10(5) CFUml(-1) were t(D) = -1.38 log N + 10.18 with R(2) = 0.99 in the pure medium and t(D) = -1.54 log N + 11.33 with R(2) = 0.98 in milk samples, respectively. The detection times for 4.8 and 5.4 x 10(5) CFUml(-1) initial cell numbers were 9.3 and 2.2 h, respectively, and the detection limit could be as low as 1 cell in a sample.  相似文献   

16.
17.
Two main features make microelectrode arrays (MEAs) a valuable tool for electrophysiological measurements under the perspective of pharmacological applications, namely: (i) they are non-invasive and permit, under appropriate conditions, to monitor the electrophysiological activity of neurons for a long period of time (i.e. from several hours up to months); (ii) they allow a multi-site recording (up to tens of channels). Thus, they should allow a high-throughput screening while reducing the need for animal experiments. In this paper, by taking advantages of these features, we analyze the changes in activity pattern induced by the treatment with specific substances, applied on dissociated neurons coming from the chick-embryo spinal cord. Following pioneering works by Gross and co-workers (see e.g. Gross and Kowalski, 1991. Neural Networks, Concepts, Application and Implementation, vol. 4. Prentice Hall, NJ, pp. 47-110; Gross et al., 1992. Sensors Actuators, 6, 1-8.), in this paper analysis of the drugs' effects (e.g. NBQX, CTZ, MK801) to the collective electrophysiological behavior of the neuronal network in terms of burst activity, will be presented. Data are simultaneously recorded from eight electrodes and besides variations induced by the drugs also the correlation between different channels (i.e. different area in the neural network) with respect to the chemical stimuli will be introduced (Bove et al., 1997. IEEE Trans. Biomed. Eng., 44, 964-977.). Cultured spinal neurons from the chick embryo were chosen as a neurobiological system for their relative simplicity and for their reproducible spontaneous electrophysiological behavior. It is well known that neuronal networks in the developing spinal cord are spontaneously active and that the presence of a significant and reproducible bursting activity is essential for the proper formation of muscles and joints (Chub and O'Donovan, 1998. J. Neurosci., 1, 294-306.). This fact, beside a natural variability among different biological preparations, allows a comparison also among different experimental session giving reliable results and envisaging a definition of a bioelectronic 'neuronal sensory system'.  相似文献   

18.
In receptor-rich vesicles isolated from Torpedo, paramagnetic or fluorescent phosphonium ions bind to both the acetylcholine receptor (AcChR) and the receptor membrane. When added to receptor vesicles, two to three phosphoniums undergo a slow time-dependent binding to the AcChR. The presence of agonist increases the rate but not the extent of binding of the alkylphosphonium nitroxides. Approximately one phosphonium per receptor can be displaced by the addition of saturating concentrations of the high-affinity histrionicotoxin derivative isodihydrohistrionicotoxin or by the addition of phencyclidine or quinacrine mustard. In addition, preincubation of the receptor with these channel blockers prevents approximately one phosphonium from binding to the receptor. When a series of alkyltriphenylphosphonium ions was studied, it was found that the rate of phosphonium binding to the receptor decreased with increasing probe hydrophobicity. This appears to be a function of the partitioning of the probe between membrane and aqueous phases. The phosphonium ions used here promote desensitization of the receptor, as judged by the binding rate of the fluorescent agonist NBDA-C5-acylcholine or alpha-bungarotoxin. Preincubation of the receptor with isodihydrohistrionicotoxin virtually eliminates the phosphonium-mediated desensitization. The rates of the phosphonium-mediated desensitization also appear to be dependent upon the phase partitioning of the probe. These results strongly suggest that the binding sites for the phosphonium ion (and the high-affinity histrionicotoxin blocking site) are accessible only through the aqueous phase. The phosphonium binding and agonist-induced transitions observed here are not observed with a negative hydrophobic ion probe, or a negative surface amphiphile, indicating that modifications in membrane electrostatics do not contribute to the observed changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The plasticity of neural networks is a complex process determined by changes in physiological status, gene expression and phenotype of a cell. A detailed study of this process dynamics requires the simultaneous recording of electrical and genomic activities in networks of neurons. This sets up one of the tasks for modern neuroscience as development of integration of electrophysiology and molecular biology methods. In the paper we review the current approaches to such integration, as well as the choice of molecular markers for detection of genomic and synaptic plasticity of neurons by use of physiological micro-sensorial system based on neuronal cells cultured on the micro-electrode arrays.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号