首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4-6 microVRMS, such that extracellular potentials exceeding 40 microV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36-37 degrees C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.  相似文献   

2.
This paper reports on the development of a fully integrated 32-channel integrated circuit (IC) for recording neuronal signals in neurophysiological experiments using microelectrode arrays. The IC consists of 32 channels of low-noise preamplifiers and bandpass filters, and an output analog multiplexer. The continuous-time RC active filters have a typical passband of 20-2000 Hz; the low and the high cut-off frequencies can be separately controlled by external reference currents. This chip provides a satisfactory signal-to-noise ratio for neuronal signals with amplitudes greater than 50 microV. For the nominal passband setting, an equivalent input noise of 3 microV rms has been achieved. A single channel occupies 0.35 mm(2) of silicon area and dissipates 1.7 mW of power. The chip was fabricated in a 0.7 microm CMOS process.  相似文献   

3.
A luminous intensity variation fluorescent probe (Probe 1) for the detection of ferric ion was developed. The quantitative range of Fe3+ content detected was 0–600 μM with the limit of detection at 0.76 μM. Furthermore, after 20 min of Fe3+ addition, the intensity of the luminescence of Probe 1 solution gradually decreased with increase in Fe3+ concentration. In addition, the B and G values of these images showed a linear relationship with Fe3+ concentration (0–500 μM). Probe 1 was successfully used for the rapid determination of Fe3+ concentration in real samples. This study demonstrates that Probe 1 is an excellent tool for the rapid determination of Fe3+ content in real samples using a smart phone without professional equipment.  相似文献   

4.
A novel peptidyl chemosensor (PySO2-His-Gly-Gly-Lys(PySO2)-NH2, 1) was synthesized by incorporation of two pyrene (Py) fluorophores into the tetrapeptide using sulfonamide group. Compound 1 exhibited selective fluorescence response towards Hg(II) over the other metal ions in aqueous buffered solutions. Furthermore, 1 with the potent binding affinity (Kd = 120 nM) for Hg(II) detected Hg(II) without interference of other metal ions such as Ag(I), Cu(II), Cd(II), and Pb(II). The binding mode of 1 with Hg(II) was investigated by UV absorbance spectroscopy, 1H NMR titration experiment, and pH titration experiment. The addition of Hg(II) induced a significant decrease in both excimer and monomer emissions of the pyrene fluorescence. Hg(II) interacted with the sulfonamide groups and the imidazole group of His in the peptidyl chemosensor and then two pyrene fluorophores were close to each other in the peptide. The decrease of both excimer and monomer emission was mainly due to the excimer/monomer emission change by dimerization of two pyrene fluorophores and a quenching effect of Hg(II).  相似文献   

5.
6.
7.
Jing Li  Shuhua Han 《Luminescence》2017,32(8):1448-1455
A novel chemosensor TrisRh based on tris(2‐aminoethyl)amine and rhodamine 6G is designed and synthesized as a fluorescence turn‐on probe for Co2+ ions that is paramagnetic with a property of quenching fluorescence. Rhodamine spirolactam forms are nonfluorescent, whereas, ring‐opening of corresponding spirocyclic induced by Co2+ results in strong fluorescence emission. Upon the addition of Co2+ ions, TrisRh can display significant enhancements in absorbance and fluorescence intensity as well as evident colorific transformation, which can be perceived by the naked eye. The association stoichiometry of TrisRh to Co2+ ions was inferred to be 1:1 through Job's plot and electrospray ionization mass spectrometry analysis. The binding model was speculated from Fourier transform infrared spectra and 1H–nuclear magnetic resonance technologies. Significantly, the limit of detection was determined to be as low as 1.22 nmol. Furthermore, TrisRh can exhibit robust anti‐jamming ability against other interference metal ions.  相似文献   

8.
9.
10.
Neuronal activity has been recorded extracellularly from the medulla of anesthetized rats. Units whose discharge frequency varied in phase with respiratory airflow were located bilaterally between 1.5 and 2 mm lateral to midline, extending from 1 mm caudal to 1.5 mm rostral to the obex, in the ventral two-thirds of the medulla. Expiratory units predominated and were intermingled with inspiratory units. Ten different patterns of discharge were distinguished, varying from a short burst at the beginning of expiration to a resting discharge which increased in frequency during either inspiration or expiration. Evidence was also obtained that fiber tracts from other areas of the brain cross midline just caudally to the obex and pass to the respiratory centers on which they apparently exert and excitatory action.  相似文献   

11.
The results of kinetic analysis of synaptosomal uptake of dopamine, noradrenaline, adrenaline and serotonin showed the presence of their own carrier systems with high or low affinity for each monoamine. The low affinity system of the uptake of monoamines by nerve endings differs from extraneuronal one by higher affinity. MPTP noncompetitively inhibits the system of highly effective uptake of the studied monoamines by nerve endings, competitively inhibiting synaptosomal uptake with low affinity of noradrenaline, adrenaline and noncompetitively serotonin and dopamine. The constant values of inhibition showed that MPTP most strongly blocks the system of synaptosomal uptake of low affinity serotonin and approximately 2-times weaker affects its system of high affinity. Carrier systems of high affinity of dopamine, adrenaline and noradrenaline block MPTP 150-500 times weaker than that of serotonin, and as for low affinity--in 2000-4000 times. It may be supposed that synaptosomal uptake of low affinity serotonin is most perceptible to the effect of MPTP and is of a particular importance in the development of Parkinson's disease symptoms.  相似文献   

12.
Microelectrode array (MEA) technology holds tremendous potential in the fields of biodetection, lab-on-a-chip applications, and tissue engineering by facilitating noninvasive electrical interaction with cells in vitro. To date, significant efforts at integrating the cellular component with this detection technology have worked exclusively with neurons or cardiac myocytes. We investigate the feasibility of using MEAs to record from skeletal myotubes derived from primary myoblasts as a way of introducing a third electrogenic cell type and expanding the potential end applications for MEA-based biosensors. We find that the extracellular action potentials (EAPs) produced by spontaneously contractile myotubes have similar amplitudes to neuronal EAPs. It is possible to classify myotube EAPs by biological signal source using a shape-based spike sorting process similar to that used to analyze neural spike trains. Successful spike-sorting is indicated by a low within-unit variability of myotube EAPs. Additionally, myotube activity can cause simultaneous activation of multiple electrodes, in a similar fashion to the activation of electrodes by networks of neurons. The existence of multiple electrode activation patterns indicates the presence of several large, independent myotubes. The ability to identify these patterns suggests that MEAs may provide an electrophysiological basis for examining the process by which myotube independence is maintained despite rapid myoblast fusion during differentiation. Finally, it is possible to use the underlying electrodes to selectively stimulate individual myotubes without stimulating others nearby. Potential uses of skeletal myotubes grown on MEA substrates include lab-on-a-chip applications, tissue engineering, co-cultures with motor neurons, and neural interfaces.  相似文献   

13.
Extracellular recording of neuronal spiking is the main method of investigation of involvement of neurons in behavioral tasks. Development of multichannel electrodes made it possible to simultaneously record activity of the same group of neurons from different locations in the brain tissue. That method allows the researches to distinguish spiking of simultaneously recorded neurons by individual set of projection coefficients of amplitude parameters on axes corresponding to different channels of the multichannel electrode. We tested the possibility of effective separation of single unit spiking streams from multiunit activity recorded by tetrode and subjected to different filtering. We described the main limitations for effective spike identification and determined the optimal band of signal filtering for tetrode recording.  相似文献   

14.
15.
Two new Schiff bases were synthesized from 1-(2,4-dihydroxyphenyl)ethanone and pyridine derivatives. Both compounds were characterized using infrared, UV–Vis., 1H NMR, 13C NMR and mass spectral studies. Density functional theory (DFT) calculations were performed for both the Schiff bases with 6-31G(d, p) as the basis set. Vibrational frequencies calculated using the theoretical method were in good agreement with the experimental values. Both the Schiff bases were highly fluorescent in nature. The cation-recognizing profile of the compounds was investigated in aqueous methanol medium. The Schiff base 4-(1-(pyridin-4-ylimino)ethyl)benzene-1,3-diol (PYEB) was found to interact with Fe(III) and Cu(II) ions, whereas the Schiff base 4,4′-((pyridine-2,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (PDEB) was found to detect Cu(II) ions. The mechanism of recognition was established as combined excited state intramolecular proton transfer (ESIPT)–chelation-enhanced fluorescence (CHEF) effect and chelation-enhanced quenching (CHEQ) process for the detection of Fe(III) and Cu(II) ions, respectively. The stability constant of the metal complexes formed during the sensing process was determined. The limit of detection for Fe(III) and Cu(II) ions with respect to Schiff base PYEB was found to be 1.64 × 10−6 and 2.16 × 10−7 M, respectively. With respect to Schiff base PDEB, the limit of detection for Cu(II) ion was found to be 4.54 × 10−4 M. The Cu(II) ion sensing property of the Schiff base PDEB was applied in bioimaging studies for the detection of HeLa cells.  相似文献   

16.
Havir EA 《Plant physiology》1986,80(2):473-478
Different organs of maize seedlings are known to contain different complements of NADH and NAD(P)H nitrate reductase (NR) activity. The study of the genetic programming that gives rise to such differences can be initiated by looking for genetic variants exhibiting different patterns of distribution of the above enzymes. We demonstrate in this work that scutella of very young maize seedlings contain NADH NR almost exclusively and that this activity is gradually replaced, as the seedling ages, with NAD(P)H NR. Leaves in the seedlings contain exclusively the NADH NR activity. A genetic variant is described that contains much reduced levels of NAD(P)H NR activity but not of NADH NR activity in the scutellum. This same variant exhibits a relatively low level of NAD(P)H NR but normal NADH NR activity in seedling root tips. These observations suggest that the genetic program used to specify the scutellar complement of NR activity shares some common components with the genetic program used to determine the young root tip complement of NR activities. Parts of regenerating callus at different stages of differentiation were examined to determine when the differences in NR complement begin to appear. The same pattern of NADH NR and NAD(P)H NR activities was found in unorganized as well as in organized callus, in recognizable root-like and even in green shoot-like material, both activities being present in all these tissues. An examination of the NR complement in different organs of a number of siblings originating from a cross involving transposon Mu-containing parents and having different levels of leaf NADH NR activity shows that the leaf NADH NR activity content and the scutellum NAD(P)H NR activity content are relatively independent of each other, indicating that the genetic programs specifying the NR content of these organs are not tightly coupled, if at all.  相似文献   

17.
Three distinct groups of monoamine (MA)-containing nerve cell bodies have been visualized in the hypothalamus and preoptic area of the cat by means of the Falck-Hillarp fluorescence histochemical technique. First, numerous small-sized catecholamine (CA) type neurons were disclosed within the ventral half of the periventricular area in the supraoptic and middle hypothalamic regions. The round to oval neurons of this medio-ventral group were more especially abundant around the base of the third ventricle, within the arcuate and supraopticus diffusus nuclei. Numerous medium-sized CA perikarya identified as the dorsal group, were also mapped out in the dorsal and posterior hypothalamic areas. Finally, a small population of both CA and serotonin (5-hydroxytryptamine, 5-HT)-containing neurons was disclosed within the lateral area of the middle and mammillary hypothalamic regions. These multipolar or elongated neurons which compose the lateral group were lying either along the ventrolateral surface of the hypothalamus or around the ventrolateral aspect of the fornix. In addition to these three MA cell groups, a few cells displaying a fluorescence of the CA type were also visualized in the so-called “dorsal chiasmatic nucleus” after α-methyl-dopa treatment. High density of CA axon terminals were found, on the other hand, in the external layer of the median eminence, in the dorsomedial, paraventricular, supraoptic and suprachiasmatic nuclei, and also within nucleus interstitialis of stria terminalis. In the present study, however, it was not possible to identify with certainty any concentration of 5-HT axon terminals in the cat hypothalamus. Therefore, except for the lateral cell group which could be peculiar to the cat, the topographical distribution of MA nerve cell bodies and axon terminals in the hypothalamus of the cat appears similar to the morphological organization of the MA neuronal elements in the hypothalamus of the rat.  相似文献   

18.
19.
Fluorescent chemosensors based on 4‐hydroxy cyclopentenones were synthesized by the base catalyzed reaction of 1,5‐diphenyl‐pentane‐1,3,5‐trione with benzil and thenil. The molecule obtained by the benzil reaction was found to be useful for the selective detection of Fe3+ by fluorescence turn‐off, while the molecule synthesized by the thenil reaction was useful for selective detection of Cu2+ by fluorescent turn‐on. Details of the synthesis, complexation mode, nature of binding, reversibility, and pH studies of the two sensors are discussed. The studies revealed that the sensors were suitable for determining Fe3+ and Cu2+ content in real water samples.  相似文献   

20.
Over the past few years, ratiometric fluorescent nanoprobes have garnered substantial interest because of their self-calibration characteristics. This research developed a ratiometric fluorescent sensor to detect phosphate. Through encapsulating luminescent materials, gold nanoclusters (AuNCs) and carbon dots (CDs) into a zeolitic imidazolate framework-8 (ZIF-8), the fluorescence signal of AuNCs was enhanced, while that of CDs was suppressed. After phosphate was added, it could decompose ZIF-8, and AuNCs and CDs were released, which weakened the fluorescence signal of the AuNCs while restoring that of the CDs. Thereby, this makes CDs/AuNCs@ZIF-8 a potential fluorescent sensor for phosphate determination. The ratiometric sensor had facile synthesis, good selectivity, and a low detection limit. Therefore, this sensor was an effective tool for the detection of phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号