首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic pyrophosphatases (PPiases) from both yeast and Escherichia coli were found to be stable against heat denaturation in the presence of Mg2+, as previously observed with the enzymes from thermophilic bacteria. No loss of activity was observed after 1 h of incubation at 50 degrees C and pHs between 6 and 9 in the yeast enzyme, and at 60 degrees C and pHs between 7.2 and 9.2 in the E. coli enzyme. Such an induced thermostability of the E. coli enzyme was detected when Mn2+, Co2+, Ca2+, Cd2+, and Zn2+ were added in place of Mg2+. On the other hand, the degree of induced thermostability of the yeast enzyme was dependent upon the divalent cations used, and Ni2+ and Cu2+ accelerated the heat inactivation. On adding the divalent cations, the difference spectra of the E. coli enzyme always showed negative peaks in the ultraviolet region, but those of the yeast enzyme changed again depending upon the divalent cations. The circular dichroism spectra in the near ultraviolet region of both enzymes greatly differed from each other, but both were not affected so much by adding the divalent cations unlike the thermophilic enzymes from Bacillus stearothermophilus and thermophilic bacterium PS-3. Yeast and E. coli PPiases did not cross-link with the anti-immunoglobulin G's from the thermophilic enzymes, but the thermophilic enzymes did with each other's antisera. The results in the present study indicated that the conformation of PPiase, in which the aromatic amino acid residues were buried in the interior of the protein molecule, was very important for the thermostability and also that the protein structures of PPiases from B. stearothermophilus and thermophilic bacterium PS-3 were very similar to each other, but were very different from those of the mesophilic enzymes.  相似文献   

2.
A deoxyuridine triphosphate nucleotidohydrolase (dUTPase) which is induced in KB cells infected with herpes simplex virus type 1 (HSV-1) was purified approximately 175-fold using affinity, hydrophobic, adsorption, and ion-exchange chromatography techniques. Of the nucleoside triphosphates commonly found in DNA and RNA, only dUTP acted as a substrate for the enzyme, and the apparent Km was 4 microM. While the HSV-1-induced dUTPase exhibited activity in the absence of added divalent cations, the activity was stimulated by Mg2+ and inhibited by EDTA. The inhibition caused by EDTA was reversed by Mg2+, Co2+, or Mn2+. The HSV-1-induced dUTPase was also inhibited by hydroxymercuribenzoate and to a lesser degree by pyrophosphate but not by orthophosphate. The molecular weight of the enzyme was estimated to be 53,000, and its isoelectric point was 5.8. The enzyme exhibited maximal activity over the pH range of 6.5-8.5. The enzyme was thermolabile at 45 degrees C, exhibiting a t1/2 of 35 min. The HSV-1-induced dUTPase was distinguishable from the KB dUTPase by its elution pattern on the various chromatography matrixes, isoelectric point, migration in polyacrylamide gels, thermostability, and response to divalent cations.  相似文献   

3.
A comparative study of thermostability and aminoacid composition of the phenylalanyl-tRNA synthetases from E. coli and Thermus thermophilus HB8 has been carried out. Compared with the mesophilic enzyme, a considerable increase of Pro, Leu, Phe, Arg and decrease of Asx, Ile, Ser, Thr and Lys content have been revealed in the thermophilic protein. Using tritium topography, Pro, (Leu + Ile) and Gly were found to be the most accessible on the surfaces of both the enzymes. In the E. coli enzyme, Thr residues were also easy to access while on the surface of the thermophilic enzyme there were more Arg residues. The quantitative assay of the surface compositions revealed the increased exposure of the (Leu + Ile) residues on the thermophilic protein as well as of the charged Asx and Arg residues. A possible correlation of the observed effects with thermostability is discussed.  相似文献   

4.
Aspartate aminotransferase (EC 2.6.1.1) was purified to homogeneity from cell extracts of a newly isolated thermophilic bacterium, Bacillus sp. strain YM-2. The enzyme consisted of two subunits identical in molecular weight (Mr, 42,000) and showed microheterogeneity, giving two bands with pIs of 4.1 and 4.5 upon isoelectric focusing. The enzyme contained 1 mol of pyridoxal 5'-phosphate per mol of subunit and exhibited maxima at about 360 and 415 nm in absorption and circular dichroism spectra. The intensities of the two bands were dependent on the buffer pH; at neutral or slightly alkaline pH, where the enzyme showed its maximum activity, the absorption peak at 360 nm was prominent. The enzyme was specific for L-aspartate and L-cysteine sulfinate as amino donors and alpha-ketoglutarate as an amino acceptor; the KmS were determined to be 3.0 mM for L-aspartate and 2.6 mM for alpha-ketoglutarate. The enzyme was most active at 70 degrees C and had a higher thermostability than the enzyme from Escherichia coli. The N-terminal amino acid sequence (24 residues) did not show any similarity with the sequences of mammalian and E. coli enzymes, but several residues were identical with those of the thermoacidophilic archaebacterial enzyme recently reported.  相似文献   

5.
Manganese ion, like Mg2+, has been found to produce high biosynthetic activity of the unadenylylated form of glutamine synthetase obtained from Mycobacterium smegmatis, and the activity with each of these cations was decreased by the adenylylation of the enzyme. Further, the gamma-glutamyltransferase reaction was catalyzed in the presence of either Mn2+, Mg2+, or Co2+ with both unadenylylated and adenylylated enzyme; however, each of these divalent cation-dependent activities was also decreased by one order of magnitude by adenylylation of the enzyme. From studies of UV-difference spectra, it was found that the ability of M. smegmatis glutamine synthetase to assume a number of distinctly different configurations was the result of the varied response of the enzyme to different cations. When either Mn2+, Mg2+, Ca2+, or Co2+ was added to the relaxed (divalent cation-free) enzyme at saturated concentration, each produced a similar UV-difference spectrum of the enzyme, indicating that the conformational states induced by these cations are similar with respect to the polarity of the microenvironment surrounding the tyrosyl and tryptophanyl groups of the enzyme. The binding of Cd2+, Ni2+, or Zn2+ to the relaxed enzyme each produced a different shift in the UV-absorption spectrum of the enzyme, indicating different conformational states. The kinetics of the spectral change that occurred upon addition of Mn2+, Mg2+, or Co2+ to a relaxed enzyme preparation were determined. The first-order rate constants for the decrease in relaxed enzyme with Mn2+ and Mg2+ were 0.604 min-1 and 0.399 min-1, respectively, at 25 degrees C, pH 7.4. The spectral change with Co2+ was completed within the time of mixing (less than 4 s). For these three metal ions, the total spectral change as well as the time course of the change were the same for both the unadenylylated enzyme and the partially adenylylated enzyme. However, Hill coefficients obtained from spectrophotometric titration data for both Mn2+ and Mg2+ were decreased with adenylylated enzyme to compared with unadenylylated enzyme. These results suggest that covalently bound AMP on each subunit may be involved in subunit interactions within the dodecamer. Circular dichroism measurements also indicated that the various structural changes of the M. smegmatis glutamine synthetase were produced by the binding of the divalent cations.  相似文献   

6.
酶蛋白在高温下的不稳定性是影响其广泛应用的主要瓶颈,嗜热酶因为独特的性质而被作为热稳定研究的极好材料。了解嗜热酶的热稳定性机制,对于采用酶工程定向设计、改造酶具有重要的意义。嗜热酶的热稳定性并不是由单一因素决定的,氨基酸组成、氢键、离子对、二硫键等都是影响嗜热酶热稳定性的重要因素。相对于嗜温酶,嗜热酶更多地采用寡聚体的形式。  相似文献   

7.
Phosphoglycolate (P-glycolate) phosphatase was purified 223-fold from spinach leaves by (NH4)2SO4 fractionation, DEAE-cellulose chromatography, and Sephadex G-200 chromatography. The partially purified enzyme had a broad pH optimum between 5.6 and 8.0 and was specific for the hydrolysis of P-glycolate with a Km (P-glycolate) of 26 microM. The enzyme was activated by divalent cations including Mg2+, Co2+, Mn2+, and Zn2+, and by anions including Cl-, Br-, NO-3, and HCOO-. Neither anions nor divalent cations activated the enzyme without the other. The P-glycolate phosphatase activities from tobacco leaves or the green algae, Chlamydomonas reinhardtii, also required Mg2+ and were activated by chloride. In addition, the enzyme was allosterically inhibited by ribose 5-phosphate. The activation of P-glycolate phosphatase by both anions and divalent cations and the inhibition by ribose 5-phosphate may be involved in the in vivo regulation of P-glycolate phosphatase activity.  相似文献   

8.
Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins   总被引:1,自引:0,他引:1  
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.  相似文献   

9.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

10.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

11.
Based on phylogenetic analysis of 16 S and 18 S rRNAs, the common ancestor of all organisms (Commonote) was proposed to be hyperthermophilic. We have previously tested this hypothesis using enzymes with ancestral residues that are inferred by molecular phylogenetic analysis. The ancestral mutant enzymes involved in metabolic systems show higher thermal stability than wild-type enzymes, consistent with the hyperthermophile common ancestor hypothesis. Here, we have extended the experiments to include an enzyme of the translation system, glycyl-tRNA synthetase (GlyRS). The translation system often shows a phylogenetic tree that is similar to the rRNA tree. Thus, it is likely that the tree represents the evolutionary route of the organisms. The maximum-likelihood tree of alpha(2) type GlyRS was constructed. From this analysis the ancestral sequence of GlyRS was deduced and individual or pairs of ancestral residues were introduced into Thermus thermophilus GlyRS. The ancestral mutants were expressed in Escherichia coli, purified and activity measured. The thermostability of eight mutated proteins was evaluated by CD (circular dichroism) measurements. Six mutants showed higher thermostability than wild-type enzyme and seven mutants showed higher activity than wild-type enzyme at 70 degrees C, suggesting an extremely thermophilic translation system in the common ancestor Commonote.  相似文献   

12.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

13.
To examine the idea that glutamate decarboxylase from E. coli can be a convenient source for the study of the effects of compounds on GABA synthesis in the nervous system, a series of substrate analogues and divalent cations were tested as potential inhibitors of the bacterial enzyme. Those analogues exhibiting inhibitor activity did so in a competitive manner. The most effective inhibitors were 3-mercaptopropionic acid, 4-bromoisophthalic acid and isophthalic acid which exhibited Ki values of 0.13 mM, 0.22 mM and 0.31 mM, respectively. Eight other analogues produced lesser degrees of inhibition. In addition, seven divalent metal cations were tested as inhibitors of the enzyme. However, only Hg2+, Cd2+, Cu2+ and Zn2+ were effective at a concentration of 0.1mM. When these results were compared to the patterns of inhibition of glutamate decarboxylase from mouse brain, certain differences in the manner in which the enzymes responded to the inhibitors, emerged. Consequently, the bacterial decarboxylase may not be a good model for the study of drug action on brain GABA synthesis.  相似文献   

14.
In the microbial dibenzothiophene desulfurization pathway, 2'-hydroxybiphenyl-2-sulfinate is converted to 2-hydroxybiphenyl and sulfinate by desulfinase (DszB) at the last step, and this reaction is rate-limiting for the whole pathway. The catalytic activity and thermostability of DszB were enhanced by the two amino acid substitutions. Based on information on the 3-D structure of DszB and a comparison of amino acid sequences between DszB and reported thermophilic and thermostable homologs (TdsB and BdsB), two amino acid residues, Tyr63 and Gln65, were selected as targets to mutate and improve DszB. These two residues were replaced by several amino acids, and the promising mutant enzymes were purified and their properties were examined. Among the wild-type and mutant enzymes, Y63F had higher catalytic activity but similar thermostability, and Q65H showed higher thermostability but less catalytic activity and affinity for the substrate. To compensate for these drawbacks, the double mutant enzyme Y63F-Q65H was purified and its properties were investigated. This mutant enzyme showed higher thermostability without loss of catalytic activity or affinity for the substrate. These superior properties of the mutant enzyme have also been confirmed with resting cells harboring the mutant gene.  相似文献   

15.
Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae contain similar levels of four enzymes of branched-chain amino acid biosynthesis: acetohydroxy acid synthase, acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B. Following growth at low partial pressures of H2-CO2, the levels of these enzymes in extracts of M. voltae are reduced three- to fivefold, which suggests that their synthesis is regulated. The enzymes from M. aeolicus were found to be similar to the eubacterial and eucaryotic enzymes with respect to molecular weights, pH optima, kinetic properties, and sensitivities to O2. The acetohydroxy acid isomeroreductase has a specific requirement for Mg2+, and other divalent cations were inhibitory. It was stimulated threefold by K+ and NH4+ ions and was able to utilize NADH as well as NADPH. The partially purified enzyme was not sensitive to O2. The dihydroxy acid dehydratase is extremely sensitive to O2, and it has a half-life under 5% O2 of 6 min at 25 degrees C. Divalent cations were required for activity, and Mg2+, Mn2+, Ni2+, Co2+, and Fe2+ were nearly equally effective. In conclusion, the archaebacterial enzymes are functionally homologous to the eubacterial and eucaryotic enzymes, which implies that this pathway is very ancient.  相似文献   

16.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

17.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

18.
The action of monovalent cations Li+, Na+, K+, Rb+, Cs+, NH4+ on catalytic and physico-chemical properties of bacterial tyrosine--phenol-lyase was investigated. It was shown that K+, Rb+, Cs+, NH4+ were the noncompetitive activators of the enzyme, Na+ was an inhibitor, Li+ did not influence the catalytic activity. The values of KA and Vmax were determined for the activators in the reaction of alpha, beta-elimination of L-tyrosine. Monovalent cations affect the absorption and CD spectra of the enzyme and its complex with the quasi-substrate--L-alanine. It was suggested that an activation of tyrosine phenollyase by monovalent cations was connected with the increase of the active protonated form of the holoenzyme (lambda max 420 mm) induced by the cations-activators.  相似文献   

19.
The interactions have been studied of a water-soluble, polymeric derivative of prostaglandin B1, PGBX, with human polymorphonuclear leukocytes (PMN). PGBX, which is a potent ionophore of divalent cations, provoked superoxide anion (O2.-) generation and lysosomal enzyme release in cytochalasin B-treated PMN in the presence of extracellular divalent cations (Ca2+, Sr2+, Mg2+, Mn2+, Ba2+). Kinetic and dose-response studies showed that PGBX mimicked te action of ionophore A23187 in PMN. Both ionophores induced superoxide generation and release of enzymes from specific and azurophil granules (lysozyme > beta-glucuronidase) without provoking release of the cytoplasmic marker enzyme lactic dehydrogenase. In contrast, the precursor of PGBX, prostaglandin B1 (PGB1), and arachidonate did not mimic ionophore-induced stimulation of PMN. PGBX induced enzyme release both in the presence of extracellular Ca2+ and Ba2+ (both of which it translocates in model liposomes), whereas A23187 showed specificity for Ca2+ (which it translocates preferentially over Ba2+). These studies indicate that the actions of a water-soluble polymer (PGBX) derived from a naturally occurring prostaglandin (PGB1) on human neutrophils resemble those of a classical ionophore (A23187). Moreover, they provide additional evidence that increments in the intracellular levels of divalent cations may signal stimulus-secretion coupling in human neutrophils.  相似文献   

20.
The properties of the microsomal vitamin K-dependent carboxylase from the livers of the adult ox and dicoumarol-treated calf were investigated. The enzymes from both sources utilized glutamic residues of synthetic peptides as substrates and could be solubilized with Triton X-100 similarly to the enzyme from vitamin K-deficient rat liver. Under the optimal assay conditions, the microsomes from calf liver had peptide carboxylase activity comparable with that of the rat liver microsomes and 6.5-fold that of adult ox liver microsomes. The apparent Km for reduced vitamin K and the ionic strength optima of the calf and adult ox enzyme clearly differ from those of the rat enzyme. Pyridoxal phosphate activated the adult ox carboxylase only slightly, whereas the calf enzyme was activated by pyridoxal phosphate as effectively as was the enzyme from the vitamin K-deficient rat. Mn2+ activated the adult ox enzyme 9-fold and calf enzyme 22-fold under optimal conditions (no KCl). Three other divalent metal cations (Ca2+, Ba2+, and Mg2+) activated the adult ox and calf enzymes to about half the extent caused by Mn2+, KCl inhibited this activation. The vitamin K-dependent carboxylase from the dicoumarol-treated calf is apparently more tightly bound to the microsomal membrane than is the adult ox enzyme. In many other respects (pH optimum), temperature optimum, Km values for peptide substrate, substrate specificity, inhibitor effects), the properties of the adult ox and calf enzymes resemble closely those of the rat enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号