首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxymyoglobin (MbO2) is oxidized easily to metmyoglobin (metMb) with generation of the superoxide anion, which can be converted by the spontaneous dismutation into H2O2, this being also a potent oxidant of MbO2. In the presence of sodium azide in stoichiometric amounts, however, the rate of autoxidation of MbO2 increased rapidly with increasing concentration of the anion, but soon reached a saturating level, the extent of which was about twice that of the normal autoxidation in buffer alone. Quantitative analysis has revealed that this enhancement is not due to the nucleophilic displacement of O2- from MbO2 by the anion (Satoh, Y., and Shikama, K. (1981) J. Biol. Chem. 256, 10272-10275), but is due to the additional oxidation of MbO2 by H2O2 freed from the metMb being occupied by the anion at the sixth coordination position. Based on these novel results and stoichiometric considerations, it is possible to propose a new view that H2O2 produced from O2- can be eliminated or decomposed mostly, if not completely, by the metMb resulting from the normal autoxidation reaction of MbO2, presumably via the formation of the ferryl species.  相似文献   

2.
K Yusa  K Shikama 《Biochemistry》1987,26(21):6684-6688
Hydrogen peroxide, one of the potent oxidants in muscle tissues, can induce very rapid oxidation of oxymyoglobin (MbO2) to metmyoglobin (metMb) with an apparent rate constant of 7.5 X 10(4) h-1 M-1 (i.e., 20.8 s-1 M-1) over the wide pH range of 5.5-10.2 in 0.1 M buffer at 25 degrees C. Its molecular mechanism, however, is quite different from that of the autoxidation of MbO2 to metMb. Kinetic analysis has revealed that the hydrogen peroxide oxidation proceeds through the formation of ferryl-Mb(IV) from deoxy-Mb(II), which is in equilibrium with MbO2, by a two-equivalent oxidation with H2O2. Once the ferryl species is formed, it reacts rapidly with another deoxy-Mb(II) in a bimolecular fashion so as to yield 2 mol of metMb(III). Under physiological conditions, the rate-determining step was the oxidation of the deoxy species by H2O2, its rate constant being estimated to be on the order of 3.6 X 10(3) s-1 M-1 at 25 degrees C. These findings leads us to the view that a good supply of dioxygen provides rather an important defense against the oxidation of myoglobin with hydrogen peroxide in cardiac and skeletal muscle tissues.  相似文献   

3.
It is in the ferrous form that myoglobin or hemoglobin can bind molecular oxygen reversibly and carry out its function. To understand the possible role of the globin moiety in stabilizing the FeO2 bond in these proteins, we examined the autoxidation rate of bovine heart oxymyoglobin (MbO2) to its ferric met-form (metMb) in the presence of 8 M urea at 25 degrees C and found that the rate was markedly enhanced above the normal autoxidation in buffer alone over the whole range of pH 5-13. Taking into account the concomitant process of unfolding of the protein in 8 M urea, we then formulated a kinetic procedure to estimate the autoxidation rate of the unfolded form of MbO2 that might appear transiently in the possible pathway of denaturation. As a result, the fully denatured MbO2 was disclosed to be extremely susceptible to autoxidation with an almost constant rate over a wide range of pH 5-11. At pH 8.5, for instance, its rate was nearly 1000 times higher than the corresponding value of native MbO2. These findings lead us to conclude that the unfolding of the globin moiety allows much easier attack of the solvent water molecule or hydroxyl ion on the FeO2 center and causes a very rapid formation of the ferric met-species by the nucleophilic displacement mechanism. In the molecular evolution from simple ferrous complexes to myoglobin and hemoglobin molecules, therefore, the protein matrix can be depicted as a breakwater of the FeO2 bonding against protic, aqueous solvents.  相似文献   

4.
The oxygenated form of myoglobin or hemoglobin is oxidized easily to the ferric met-form with generation of the superoxide anion. To make clear the possible role(s) of the distal histidine (H64) residue in the reaction, we have carried out detailed pH-dependence studies of the autoxidation rate, using some typical H64 mutants of sperm whale myoglobin, over the wide range of pH 5-12 in 0.1 M buffer at 25 degrees C. Each mutation caused a dramatic increase in the autoxidation rate with the trend H64V >/= H64G >/= H64L > H64Q > H64 (wild-type) at pH 7.0, whereas each mutant protein showed a characteristic pH-profile which is essentially different from that of the wild-type or native sperm whale MbO2. In particular, all the mutants have lost the acid-catalyzed process that can play a dominant role in the autoxidation reaction of most mammalian myoglobins or hemoglobins. Kinetic analyses of various types of pH-profiles lead us to conclude that the distal histidine residue can play a dual role in the nucleophilic displacement of O2- from MbO2 or HbO2 in protic, aqueous solution. One is in a proton-relay mechanism via its imidazole ring, and the other is in the maximum protection of the FeO2 center against a water molecule or an hydroxyl ion that can enter the heme pocket from the surrounding solvent.  相似文献   

5.
6.
Native oxymyoglobin (MbO2) was isolated directly from the skeletal muscle of bigeye tuna (Thunnus obesus) with complete separation from metmyoglobin (metMb) on a CM-cellulose column. It was examined for its stability properties over a wide range of pH values (pH 5-12) in 0.1 M buffer at 25 degrees C. When compared with sperm whale MbO2 as a reference, the tuna MbO2 was found to be much more susceptible to autoxidation. Kinetic analysis has revealed that the rate constant for a nucleophilic displacement of O2- from MbO2 by an entering water molecule is 10-times higher than the corresponding value for sperm whale MbO2. The magnitude of the circular dichroism of bigeye tuna myoglobin at 222 nm was comparable to that of sperm whale myoglobin, but its hydropathy profile revealed the region corresponding to the distal side of the heme iron to be apparently less hydrophobic. The kinetic simulation also demonstrated that accessibility of the solvent water molecule to the heme pocket is clearly a key factor in the stability properties of the bound dioxygen.  相似文献   

7.
The iron(II)-dioxygen bond in myoglobin and hemoglobin is a subject of wide interest. Studies range from examinations of physical-chemical properties dependent on its electronic structure, to investigations of the stability as a function of oxygen supply. Among these, stability properties are of particular importance in vivo. Like all known dioxygen carriers synthesized so far with transition metals, the oxygenated forms of myoglobin and hemoglobin are known to be oxidized easily to their ferric met-forms, which cannot bind molecular oxygen and are therefore physiologically inactive. The mechanistic details of this autoxidation reaction, which are of clinical, as well as of physical-chemical, interest, have long been investigated by a number of authors, but a full understanding of the heme oxidation has not been reached so far. Recent kinetic and thermodynamic studies of the stability of oxymyoglobin (MbO2) and oxyhemoglobin (HbO2) have revealed new features in the FeO2 bonding. In vivo, the iron center is always subject to a nucleophilic attack of the water molecule or hydroxyl ion, which can enter the heme pocket from the surrounding solvent and thereby irreversibly displace the bound dioxygen from MbO2 or HbO2 in the form of O2- so that the iron is converted to the ferric met-form. Since the autoxidation reaction of MbO2 or HbO2 proceeds through a nucleophilic displacement following one-electron transfer from iron(II) to the bound O2, this reaction may be viewed as a meeting point of the stabilization and the activation of molecular oxygen performed by hemoproteins. Along with these lines of evidence, we finally discuss the stability property of human HbO2 and provide with the most recent state of hemoglobin research. The HbA molecule contains two types of alphabeta contacts and seems to differentiate them quite properly for its functional properties. The alpha1beta2 or alpha2beta1 contact is associated with the cooperative oxygen binding, whereas the alpha1beta1 or alpha2beta2 contact is used for controlling the stability of the bound O2. We can thus form a unified picture for hemoglobin function by closely integrating the cooperative and the stable binding of molecular oxygen with iron(II) in aqueous solvent. These new views on the nature of FeO2 bonding and the possible role of globin moiety in stabilizing MbO2 and HbO2 are of primary importance, not only for a full understanding of various hemoprotein reactions with O2, but also for planning new molecular designs for synthetic oxygen carriers which may be able to function in aqueous solvent and at physiological temperature.  相似文献   

8.
The reaction of oxymyoglobin (MbO2) with H2O2 has been examined at pH 7.2 and 20(+/- 2) degrees C for reactant ratios of [H2O2]:[MbO2] greater than approximately 15:1. Under the conditions of large excesses of H2O2, the reaction is characterized by an increase in the rate of loss of MbO2 as [H2O2] is increased, for which a value of k(MbO2 + H2O2) approximately 3 M-1 s-1 is obtained. This kinetic behavior contrasts the saturation kinetics observed previously at lower values of [H2O2]. The change in kinetics at increasing excesses of H2O2 is accompanied by a progressive tendency toward the direct formation of ferrimyoglobin at the expense of ferrylmyoglobin formation. A mechanism is proposed in which an initially formed intermediate produces the ferryl derivative in competition with the formation of ferrimyoglobin through the interaction of further H2O2. Overall, the H2O2 is catalytically decomposed by the MbO2. This mechanism is integrated with that determined previously at low excesses of H2O2 into a complex general scheme that applies over the entire studied range of [H2O2]:[MbO2]. No evidence is obtained for the conversion of ferrylmyoglobin to oxymyoglobin by the large excesses of H2O2, regardless of whether the ferryl derivative is the product of the reaction of H2O2 with the oxy or ferri derivative of myoglobin.  相似文献   

9.
Kinetic analysis and mechanistic aspects of autoxidation of catechins   总被引:3,自引:0,他引:3  
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  相似文献   

10.
Reaction of ferric native myoglobin (Mb) with hydrogen peroxide (H(2)O(2)) was studied by the aid of stopped-flow rapid-scan spectrophotometry. In contrast to the results in previous studies where compound I was reported to be undetectable, both sperm whale and horse heart metmyoglobins (metMbs) formed a significant quantity of compound I, an oxoferryl porphyrin pi-cation radical (Por(+)-Fe(IV)(O)), during their reactions with H(2)O(2). With both kinds of Mbs, formation of compound I was more clearly observed in D(2)O than in H(2)O. The compound thus formed was capable of performing monooxygenation of thioanisole to methyl phenyl sulfoxide and a 2-electron oxidation of H(2)O(2) giving O(2) and H(2)O as products. It was also converted into ferryl myoglobin (Por-Fe(IV)(O)-globin(+)) spontaneously. Rate constants for these reactions and that for a direct conversion of metMb to ferryl Mb through the homolysis of H(2)O(2) were determined. These results established unambiguously that native metMb can form both compound I and ferryl Mb upon reaction with H(2)O(2) and that these high valent iron compounds serve as essential intermediates in Mb-assisted peroxidative reactions. The observed deuterium effect on the apparent stability of compound I was attributable to that effect on the hydrogen abstraction step in the 2-electron oxidation of H(2)O(2) by compound I.  相似文献   

11.
Specific catalytic oxidation of oxymyoglobin (MbO(2)) and luminol by ferricyanide was studied in a flow-injection system. MbO(2) in different redox states (ferric and ferrous) was oxidized to Mb(Fe(III)) by ferricyanide, and then specific binding of the ferrocyanide anion to Mb(Fe(III)) to the His 119 (GH1) region accelerated the electron transfer between Mb(Fe(III)) and luminol, which produced a chemiluminescence (CL) signal at 425 nm. The increased CL emission was correlated with the myoglobin concentration in the range 0.16-7.5 microg/mL. Thermogravimetry and differential scanning calorimetry were used to investigate the temperature effects on this reaction. The results showed that the CL intensity in the presence of myoglobin changed considerably with heating in the range 15-50 degrees C, and the maximal CL intensity was observed at 40 degrees C, corresponding to the glass transition temperature of myoglobin. The effect of different ligands and interferences were also studied.  相似文献   

12.
Native oxymyoglobin (MbO2) was isolated from red muscle of G. japonicus by chromatographic separation from metmyoglobin (metMb) on DEAE-cellulose and the amino acid sequence of the major chain was determined with the aid of sequence homology with that of G. australis. It was shown to differ in amino acid sequence from that of G. australis by 10 replacements, to be acetylated at the amino terminus and to contain glutamine at the distal (E7) residue. It was also shown to have a spectrum very similar to that of mammalian MbO2. However, the pH-dependence for the autoxidation of MbO2 was seen to be quite different from that of sperm whale (Physeter catodon) MbO2. Although the sequence homology between sperm whale and G. japonicus myoglobins is about 40%, their hydropathy profiles were very similar, indicating that they have a similar geometry in their globin folding.  相似文献   

13.
Unlike mammalian oxymyoglobins, Aplysia MbO2 is extremely susceptible to autoxidation, and its pH dependence is also unusual. Kinetic formulation has revealed that two kinds of dissociable group with pK1 = 4.3 and pK2 = 6.1, respectively, at 25 degrees C are involved in the stability property of Aplysia MbO2. In order to characterize thermodynamically these dissociation processes involved, the effect of temperature on K1 and K2 was studied by analyzing the pH dependence for the autoxidation rate of Aplysia MbO2 in 0.1 M buffer over the pH range of 4-11, and at 15, 25 and 35 degrees C. The resulting thermodynamic parameters for each group were both those to be expected for the ionization of a carboxyl group; the delta H degrees value being numerically much less than 1 kcal.mol-1, or zero in practice, but being associated with a large negative value of delta S degrees of the order of -20 cal.mol-1.K-1. Taking into account the fact that Aplysia myoglobin contains only a single histidine residue corresponding to the heme-binding proximal one, we can unequivocally conclude that the two kinds of the dissociable group involved in the unusual stability of Aplysia MbO2 must both be carboxyl groups, the protonation of these groups being responsible for an increase in its autoxidation rate in the acidic pH range.  相似文献   

14.
Amino acid sequence of myoglobin from the mollusc Dolabella auricularia   总被引:1,自引:0,他引:1  
The complete amino acid sequence of the myoglobin from Dolabella auricularia, a common gastropodic mollusc on the Japanese coast, has been determined. The myoglobin is composed of 146 amino acid residues, is acetylated at the NH2 terminus, and contains a single histidine residue at position 95 which most likely corresponds to the heme-binding proximal histidine. The sequence of Dolabella myoglobin shows strong homology (72-77%) with those of Aplysia myoglobins. The autoxidation rate of Dolabella oxymyoglobin (MbO2) was examined in 0.1 M buffer at 25 degrees C over pH range 4.8-12. Dolabella MbO2 was extremely unstable between pH 7 and 11, and the pH dependence of the stability was quite different from that of sperm whale MbO2. This property may be partly due to the absence of a distal (E7) histidine in Dolabella myoglobin.  相似文献   

15.
In this work, we investigated the influence of NADH on the redox state of myoglobin and the roles of pyruvate and lactate in this process. NADH increased the autoxidation rate of myoglobin. Both a drop in pH and partial deoxygenation markedly stimulated the autoxidation process and the influence of NADH. A correlation between met-Mb formation rate and NADH oxidation rate was always observed. The increased rate of Mb autoxidation caused by NADH was inhibited by catalase and pyruvate but not by l-lactate. The antioxidant activity versus H2O2 of both pyruvate and lactate was evidenced by chemiluminescence experiments. The antioxidant activity of lactate disappeared completely in the presence of myoglobin or apo-myoglobin, whereas it was only reduced for pyruvate. These results could be of interest in preventing autoxidation of myoglobin that can contribute to ischemia-reperfusion injury during infarction or high-intensity exercise.  相似文献   

16.
The reaction of hydrogen peroxide H(2)O(2) with horse heart metmyoglobin (HH metMb), sperm whale metmyoglobin (SW metMb) and human metHb (metHbA) was studied at pH 6-8 by low temperature (10 K) EPR spectroscopy with the emphasis on the peroxyl radicals formed during the reaction. The same type of peroxyl radical was found in both myoglobin systems, as was concluded from close similarities in the spectroscopic properties of the radicals and in their kinetic dependences. This is consistent with previous reports of the peroxyl radical being localised on the Trp14 of SW and HH myoglobins. There are two types of peroxyl radical found in the metHbA/H(2)O(2) system, one (ROO-I) having spectral parameters, kinetic and pH dependences similar to those of the peroxyl radical found in both myoglobin systems. The other peroxyl radical (ROO-II) found in metHbA treated with H(2)O(2) has slightly different, though distinguishable, spectral parameters and a significantly different kinetic dependence as compared to those of the peroxyl radical common for all three proteins studied (ROO-I). The concentration of ROO-I radical formed in the three proteins on addition of H(2)O(2) correlates with the effectiveness of incorporating molecular oxygen into styrene oxide reported before for these three proteins. It is shown that a different distance from Trp14 to haem iron in the three proteins might be the structural basis for the different yield of the peroxyl radical and the different efficiency of incorporation of molecular oxygen into styrene. The site of the peroxyl radical found only in metHbA (ROO-II) is speculated to be the Trp37 residue of the beta-subunit of HbA.  相似文献   

17.
Giuffrè A  Forte E  Brunori M  Sarti P 《FEBS letters》2005,579(11):2528-2532
It is relevant to cell physiology that nitric oxide (NO) reacts with both cytochrome oxidase (CcOX) and oxygenated myoglobin (MbO(2)). In this respect, it has been proposed [Pearce, L.L., et al. (2002) J. Biol. Chem. 277, 13556-13562] that (i) CcOX in turnover out-competes MbO(2) for NO, and (ii) NO bound to reduced CcOX is "metabolized" in the active site to nitrite by reacting with O(2). In contrast, rapid kinetics experiments reported in this study show that (i) upon mixing NO with MbO(2) and CcOX in turnover, MbO(2) out-competes the oxidase for NO and (ii) after mixing nitrosylated CcOX with O(2) in the presence of MbO(2), NO (and not nitrite) dissociates from the enzyme causing myoglobin oxidation.  相似文献   

18.
The replacement reaction of myoglobin (Mb), MbCO + O2 leads to MbO2 + CO leads to MbCO + O2, has been studied with flash photolysis in the temperature range from 140 to 320 K and the time range from 2 mus to 200 s. In a fraction of the Mb, the photodissociated CO remains within the protein; rebinding is not affected by the presence of O2 and occurs with rates that are identical with the ones observed earlier in solvents containing only CO. In the remaining fraction CO migrates into the solvent and Mb combines preferentially with oxygen. The rate of the subsequent replacement of O2 by CO permits calculation of the oxygen dissociation rate ko2; ko2 has been determined from 260 to 320 K. The measurements support a multibarrier model.  相似文献   

19.
Oxygen activation during oxidation of the lignin-derived hydroquinones 2-methoxy-1,4-benzohydroquinone (MBQH(2)) and 2, 6-dimethoxy-1,4-benzohydroquinone (DBQH(2)) by laccase from Pleurotus eryngii was examined. Laccase oxidized DBQH(2) more efficiently than it oxidized MBQH(2); both the affinity and maximal velocity of oxidation were higher for DBQH(2) than for MBQH(2). Autoxidation of the semiquinones produced by laccase led to the activation of oxygen, producing superoxide anion radicals (Q(*-) + O(2) <--> Q + O(2)(*-)). As this reaction is reversible, its existence was first noted in studies of the effect of systems consuming and producing O(2)(*-) on quinone formation rates. Then, the production of H(2)O(2) in laccase reactions, as a consequence of O(2)(*-) dismutation, confirmed that semiquinones autoxidized. The highest H(2)O(2) levels were obtained with DBQH(2), indicating that DBQ(*-) autoxidized to a greater extent than did MBQ(*-). Besides undergoing autoxidation, semiquinones were found to be transformed into quinones via dismutation and laccase oxidation. Two ways of favoring semiquinone autoxidation over dismutation and laccase oxidation were increasing the rate of O(2)(*-) consumption with superoxide dismutase (SOD) and recycling of quinones with diaphorase (a reductase catalyzing the divalent reduction of quinones). These two strategies made the laccase reaction conditions more natural, since O(2)(*-), besides undergoing dismutation, reacts with Mn(2+), Fe(3+), and aromatic radicals. In addition, quinones are continuously reduced by the mycelium of white-rot fungi. The presence of SOD in laccase reactions increased the extent of autoxidation of 100 microM concentrations of MBQ(*-) and DBQ(*-) from 4.5 to 30.6% and from 19.6 to 40.0%, respectively. With diaphorase, the extent of MBQ(*-) autoxidation rose to 13.8% and that of DBQ(*-) increased to 39.9%.  相似文献   

20.
A mathematical model describing facilitation of O(2) diffusion by the diffusion of myoglobin and hemoglobin is presented. The equations are solved numerically by a finite-difference method for the conditions as they prevail in cardiac and skeletal muscle and in red cells without major simplifications. It is demonstrated that, in the range of intracellular diffusion distances, the degree of facilitation is limited by the rate of the chemical reaction between myglobin or hemoglobin and O(2). The results are presented in the form of relationships between the degree of facilitation and the length of the diffusion path on the basis of the known kinetics of the oxygenation-deoxygenation reactions. It is concluded that the limitation by reaction kinetics reduces the maximally possible facilitated oxygen diffusion in cardiomyoctes by ~50% and in skeletal muscle fibers by ~ 20%. For human red blood cells, a reduction of facilitated O(2) diffusion by 36% is obtained in agreement with previous reports. This indicates that, especially in cardiomyocytes and red cells, chemical equilibrium between myoglobin or hemoglobin and O(2) is far from being established, an assumption that previously has often been made. Although the "O(2) transport function" of myoglobin in cardiac muscle cells thus is severely limited by the chemical reaction kinetics, and to a lesser extent also in skeletal muscle, it is noteworthy that the speed of release of O(2) from MbO(2), the "storage function," is not limited by the reaction kinetics under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号