首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M W Van Dyke  P B Dervan 《Biochemistry》1983,22(10):2373-2377
The DNA binding sites for the antitumor, antiviral, antibiotics chromomycin, mithramycin, and olivomycin on 70 base pairs of heterogeneous DNA have been determined by using the (methidiumpropyl-EDTA)iron(II) [MPE x Fe(II)] DNA cleavage inhibition pattern technique. Two DNA restriction fragments 117 and 168 base pairs in length containing the lactose operon promoter-operator region were prepared with complementary strands labeled with 32P at the 3' end. MPE x Fe(II) was allowed to partially cleave the restriction fragment preequilibrated with either chromomycin, mithramycin, or olivomycin in the presence of Mg2+. The preferred binding sites for chromomycin, mithramycin, and olivomycin in the presence of Mg2+ appear to be a minimum of 3 base pairs in size containing at least 2 contiguous dG x dC base pairs. Many binding sites are similar for the three antibiotics; chromomycin and olivomycin binding sites are nearly identical. The number of sites protected from MPE x Fe(II) cleavage increases as the concentration of drug is raised. For chromomycin/Mg2+, the preferred sites on the 70 base pairs of DNA examined are (in decreasing affinity) 3'-GGG, CGA greater than CCG, GCC greater than CGA, CCT greater than CTG-5'. The sequence 3'-CGA-5' has different affinities, indicating the importance of either flanking sequences or a nearly bound drug.  相似文献   

2.
Previous restriction mapping studies (M.A. Mallamaci, D.P. Reed and S.A. Winkle, J. Biomolecular Structure and Dynamics, in press (1992)) have indicated that a small number of locations on the plasmid pBR322 may be high affinity binding sites for the carcinogen N-acetoxy-N-acetyl-2-aminofluorene (acetoxyAAF). PBR322 was reacted with acetoxyAAF to produce DNA with one, three or seven acetoxyAAF moieties per DNA molecule. Thus only the higher affinity binding sites are affected. Subsequent digestion with the restriction enzyme Hinf I produced fragments containing previously indicated locations of potential acetoxyAAF binding sites. Fragments thought not to contain binding sites were also examined as controls. The isolated fragments, singly 32P end-labeled, were digested with lambda exonuclease. The three fragments suspected of containing acetoxyAAF binding sites possess new lambda exonuclease inhibition sites when the fragments are obtained from acetoxyAAF reacted DNA. No such inhibition sites are found with the two fragments suggested previously not to contain acetoxyAAF binding sites. These carcinogen produced inhibition sites occur in sequences which are similar, suggesting that acetoxyAAF preferentially may target a small number of sequences.  相似文献   

3.
Preferential psoralen photobinding sites have been mapped in vitro on restriction fragments spanning the SV40 origin region and surrounding sequences by a new fine structure analysis technique. Purified DNA fragments were photoreacted with 3H-5-methylisopsoralen (3H-5-MIP), a psoralen derivative which forms only monoadducts. Fragments were then end-labeled and digested with lambda exonuclease, a 5' processive enzyme which we have determined pauses at 5-MIP monoadducts. When photobinding sites were mapped on denaturing sequencing gels, it was observed that 5-MIP binds preferentially to 5'-TA sites, and to a lesser degree to 5'-AT sites. Utilizing this approach, we have identified a psoralen hypersensitive region in which the binding sites were much stronger than those in the surrounding sequences. This region extends from 150 base pairs (bp) to the late side of the enhancers to the early enhancer/promoter boundary. We suggest that this region contains a sequence directed structural alteration of the DNA helix which can be detected by the psoralen mapping approach described.  相似文献   

4.
We report the properties of the new BseMII restriction and modification enzymes from Bacillus stearothermophilus Isl 15-111, which recognize the 5'-CTCAG sequence, and the nucleotide sequence of the genes encoding them. The restriction endonuclease R.BseMII makes a staggered cut at the tenth base pair downstream of the recognition sequence on the upper strand, producing a two base 3'-protruding end. Magnesium ions and S:-adenosyl-L-methionine (AdoMet) are required for cleavage. S:-adenosylhomocysteine and sinefungin can replace AdoMet in the cleavage reaction. The BseMII methyltransferase modifies unique adenine residues in both strands of the target sequence 5'-CTCAG-3'/5'-CTGAG-3'. Monomeric R.BseMII in addition to endonucleolytic activity also possesses methyltransferase activity that modifies the A base only within the 5'-CTCAG strand of the target duplex. The deduced amino acid sequence of the restriction endonuclease contains conserved motifs of DNA N6-adenine methylases involved in S-adenosyl-L-methionine binding and catalysis. According to its structure and enzymatic properties, R.BseMII may be regarded as a representative of the type IV restriction endonucleases.  相似文献   

5.
6.
Human cells treated with interferon synthesize two proteins that exhibit high homology to murine Mx1 protein, which has previously been identified as the mediator of interferon-induced cellular resistance of mouse cells against influenza viruses. Using murine Mx1 cDNA as a hybridization probe, we have isolated cDNA clones originating from two distinct human Mx genes, designated MxA and MxB. In human fibroblasts, expression of MxA and MxB is strongly induced by alpha interferon (IFN-alpha), IFN-beta, Newcastle disease virus, and, to a much lesser extent, IFN-gamma, MxA and MxB proteins have molecular masses of 76 and 73 kilodaltons, respectively, and their sequences are 63% identical. A comparison of human and mouse Mx proteins revealed that human MxA and mouse Mx2 are the most closely related proteins, showing 77% sequence identity. Near their amino termini, human and mouse Mx proteins contain a block of 53 identical amino acids and additional regions of very high sequence similarity. These conserved sequences are also present in a double-stranded RNA-inducible fish gene, which suggests that they may constitute a functionally important domain of Mx proteins. In contrast to mouse Mx1 protein, which accumulates in the nuclei of IFN-treated mouse cells, the two human Mx proteins both accumulate in the cytoplasm of IFN-treated cells.  相似文献   

7.
B E Bowler  S J Lippard 《Biochemistry》1986,25(10):3031-3038
We report the DNA binding site preferences of the novel molecule AO-Pt, in which the anticancer drug dichloro(ethylenediamine)platinum(II) is linked by a hexamethylene chain to acridine orange. The sequence specificity of platinum binding was mapped by exonuclease III digestion of 165 and 335 base pair restriction fragments from pBR322 DNA. Parallel studies were carried out with the unmodified anticancer drugs cis-diamminedichloroplatinum(II) (cis-DDP) and dichloro(ethylenediamine)platinum(II), [Pt(en)Cl2]. Oligo(dG) sequences are the most prevalent binding sites for AO-Pt, with secondary binding occurring mainly at d(AG) sites. cis-DDP and [Pt(en)Cl2] bind less readily to the secondary sequences, with cis-DDP showing greater binding site selectivity than [Pt(en)Cl2]. The DNA intercalator ethidium bromide promotes binding of [Pt(en)Cl2] and cis-DDP to many sites containing d(CGG) and, to a lesser extent, d(AG) sequences. AO-Pt exhibits enhanced binding to these sequences without the need for an external intercalator. Unlinked acridine orange, however, does not promote binding of [Pt(en)Cl2] and cis-DDP to d(CGG) and d(AG) sequences. These results are discussed in terms of the sequence preferences, stereochemistry, and relative residence times of the intercalators at their DNA binding sites. By modulating local structure in a sequence-dependent manner, both linked and, in the case of ethidium, free intercalators can influence the regioselectivity of covalent modification of DNA by platinum antitumor drugs.  相似文献   

8.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

9.
The interferon-regulated mouse Mx gene encodes the 72-kilodalton nuclear Mx protein that selectively inhibits influenza virus replication. Mice carrying Mx+ alleles synthesize Mx protein and resist influenza virus infection, whereas mice homozygous for Mx- alleles fail to synthesize Mx protein and, as a consequence, are influenza virus susceptible. Southern blot analysis allowed us to define the following three distinct Mx restriction fragment length polymorphism (RFLP) types among classical inbred strains: RFLP type 1 in the Mx+ strains A2G and SL/NiA, RFLP type 2 in BALB/c and 33 other Mx- strains, and RFLP type 3 in CBA/J and 2 other Mx- strains. cDNA clones of Mx mRNAs from BALB/c and CBA/J cells were isolated, and their sequences were compared with that of the wild-type Mx mRNA of strain A2G. Mx mRNA of BALB/c mice has 424 nucleotides absent from the coding region, resulting in a frame shift and premature termination of Mx protein. The missing sequences correspond exactly to Mx exons 9 through 11. These three exons, together with some flanking intron sequences, are deleted from the genomes of all Mx RFLP type 2 strains. The Mx- phenotype of the Mx RFLP type 3 strain CBA/J is due to a point mutation that converts the lysine codon in position 389 to a termination codon. Mx RFLP type 3 strains have an extra HindIII site which maps to an intron and thus probably does not affect the coding capacity of Mx mRNA. We further show that the Mx mRNA levels in interferon-treated BALB/c and CBA/J cells are about 15-fold lower than in similarly treated Mx+ cells. This is probably due to decreased metabolic stabilities of the mutant mRNAs.  相似文献   

10.
We cloned and sequenced a 2.35-kilobase EcoRI fragment of genomic DNA from a local freshwater fish (Perca fluviatilis) that strongly hybridized to probes derived from the murine influenza virus resistance gene Mx. The cloned fish DNA contained blocks of sequences related to Mx gene exons 3 to 8, which appeared to represent exons of a bona fide fish gene because they were separated by intron sequences flanked by consensus splice acceptor and donor sites. Injection of double-stranded RNA into the peritoneal cavity of trouts resulted in 5- to 10-fold elevated levels of two liver mRNAs of about 2.0 to 2.5 kilobases in length that hybridized to the cloned genomic DNA. High sequence similarity between this fish gene and the murine Mx gene, identical exon lengths, and similar inducibilities in vivo by double-stranded RNA indicate that we isolated a fragment of a fish Mx gene.  相似文献   

11.
S Oikawa  S Kawanishi 《FEBS letters》1999,453(3):365-368
Telomere shortening during human aging has been reported to be accelerated by oxidative stress. We investigated the mechanism of telomere shortening by oxidative stress. H2O2 plus Cu(II) caused predominant DNA damage at the 5' site of 5'-GGG-3' in the telomere sequence. Furthermore, H2O2 plus Cu(II) induced 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in telomere sequences more efficiently than that in non-telomere sequences. NO plus O2- efficiently caused base alteration at the 5' site of 5'-GGG-3' in the telomere sequence. It is concluded that the site-specific DNA damage at the GGG sequence by oxidative stress may play an important role in increasing the rate of telomere shortening with aging.  相似文献   

12.
Specific resistance of Mx+ mice to influenza virus is due to the interferon (IFN)-induced protein Mx. The Mx gene consists of 14 exons that are spread over at least 55 kilobase pairs of DNA. Surprisingly, the Mx gene promoter is induced as efficiently by Newcastle disease virus as it is by IFN. The 5' boundary of the region required for maximal induction by both IFN and Newcastle disease virus is located about 140 base pairs upstream of the cap site. This region contains five elements of the type GAAANN, which occurs in all IFN- and virus-inducible promoters. The consensus sequence purine-GAAAN(N/-)GAAA(C/G)-pyrimidine is found in all IFN-inducible promoters.  相似文献   

13.
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.  相似文献   

14.
Temperate bacteriophage Mx8 of Myxococcus xanthus encapsidates terminally repetitious DNA, packaged as circular permutations of its 49-kbp genome. During both lytic and lysogenic development, Mx8 expresses a nonessential DNA methylase, Mox, which modifies adenine residues in occurrences of XhoI and PstI recognition sites, CTCGAG and CTGCAG, respectively, on both phage DNA and the host chromosome. The mox gene is necessary for methylase activity in vivo, because an amber mutation in the mox gene abolishes activity. The mox gene is the only phage gene required for methylase activity in vivo, because ectopic expression of mox as part of the M. xanthus mglBA operon results in partial methylation of the host chromosome. The predicted amino acid sequence of Mox is related most closely to that of the methylase involved in the cell cycle control of Caulobacter crescentus. We speculate that Mox acts to protect Mx8 phage DNA against restriction upon infection of a subset of natural M. xanthus hosts. One natural isolate of M. xanthus, the lysogenic source of related phage Mx81, produces a restriction endonuclease with the cleavage specificity of endonuclease BstBI.  相似文献   

15.
The DNA base pair preferences of the antitumor antibiotic CC-1065 and two analogs of CC-1065 were studied by following the rate of covalent bond formation (N-3 adenine adduct) with DNA oligomers containing the 5'NNTTA* and 5'NNAAA* sequences (N = nucleotide, A* = alkylated adenine). The rate of adduct formation of CC-1065 is greatly affected by DNA base changes at the fourth and fifth positions of the bonding site for the 5'NNAAA sequences, but not the 5'NNTTA sequences. However, an analog of CC-1065 containing the same alkylating moiety as CC-1065, but not the third fused ring system or additional methylene and oxygen substituents, shows similar rates of adduct formation for all sequences. A second analog of CC-1065 containing three fused ring systems, but not the methylene and oxygen substituents of CC-1065, shows rates of adduct formation with the same sequence dependence as CC-1065, but does not distinguish between the sequences to the degree shown by CC-1065. Adduct formation of CC-1065, but not the analogs, competes with a reversibly bound species. Thymine bases to the 3' side of a potentially reactive adenine or a cytosine base at the fifth position from the bonding adenine create reversible binding sites which decrease the rate of adduct formation of CC-1065. The sequence 5'GCGAATT binds CC-1065 only reversibly. This sequence can compete for CC-1065 with covalent bonding sequences if the sites are located in different oligomers, or if the sites are located (overlapped or not overlapped) in the same oligomer. The results of these competitive binding experiments suggest that the transfer of CC-1065 from the reversible binding site to the covalent bonding site with both sites located on a single DNA duplex, not overlapped, occurs through an equilibrium of CC-1065 in solution, not by migration of CC-1065 in the minor groove.  相似文献   

16.
Temperate Myxococcus xanthus phage Mx8 integrates into the attB locus of the M. xanthus genome. The phage attachment site, attP, is required in cis for integration and lies within the int (integrase) coding sequence. Site-specific integration of Mx8 alters the 3' end of int to generate the modified intX gene, which encodes a less active form of integrase with a different C terminus. The phage-encoded (Int) form of integrase promotes attP x attB recombination more efficiently than attR x attB, attL x attB, or attB x attB recombination. The attP and attB sites share a common core. Sequences flanking both sides of the attP core within the int gene are necessary for attP function. This information shows that the directionality of the integration reaction depends on arm sequences flanking both sides of the attP core. Expression of the uoi gene immediately upstream of int inhibits integrative (attP x attB) recombination, supporting the idea that uoi encodes the Mx8 excisionase. Integrase catalyzes a reaction that alters the primary sequence of its gene; the change in the primary amino acid sequence of Mx8 integrase resulting from the reaction that it catalyzes is a novel mechanism by which the reversible, covalent modification of an enzyme is used to regulate its specific activity. The lower specific activity of the prophage-encoded IntX integrase acts to limit excisive site-specific recombination in lysogens carrying a single Mx8 prophage, which are less immune to superinfection than lysogens carrying multiple, tandem prophages. Thus, this mechanism serves to regulate Mx8 site-specific recombination and superinfection immunity coordinately and thereby to preserve the integrity of the lysogenic state.  相似文献   

17.
Anthramycin, tomaymycin and sibiromycin are pyrrolo(1,4)benzodiazepine antitumor antibiotics. These compounds react with DNA and other guanine-containing polydeoxynucleotides to form covalently bound antibiotic - polydeoxynucleotide complexes. Experiments utilizing radiolabelled antibiotics have led to the following conclusions: 1. Sibiromycin reacts much faster than either anthramycin or tomaymycin with DNA. 2. At saturation binding the final antibiotic to base ratios for sibiromycin, anthramycin and tomaymycin are 1 : 8.8,1: 12.9, and 1 : 18.2, respectively. 3. No reaction with RNA or protein occurs with the pyrrolo(1,4)benzodiazepine antibiotics. 4. Sibiromycin effectively competes for the same DNA binding sites as anthramycin and tomaymycin; however, there is only partial overlap for the same binding sites between anthramycin and tomaymycin. 5. Whereas all three pyrrolo(1,4)benzodiazepine antibiotic-DNA complexes are relatively stable to alkaline conditions, their stability under acidic conditions increases in the order tomaymycin, anthramycin and sibiromycin. 6. No loss of non-exchangeable hydrogens in either the pyrrol ring or the side chains of these antibiotics occurs upon formation of their complexes with DNA. 7. Unchanged antibiotic has been demonstrated to be released upon acid treatment of the anthramycin-DNA and tomaymycin-DNA complexes. 8. A Schiff base linkage between the antibiotics and DNA has been eliminated. The comparative reactivity of the three antibiotics towards DNA and the stability of their DNA complexes is discussed in relation to their structures. A working hypothesis for the formation of the antibiotic-DNA covalent complexes is proposed based upon the available information.  相似文献   

18.
Five different DNA fragments have been treated with a range of conformationally sensitive reagents in an effort to probe structural changes in DNA associated with binding of the bis-intercalating antibiotic echinomycin. For each probe, the intensity and pattern of its reactivity with DNA have been analyzed in order to elucidate the effect of antibiotic binding on the accessibility of a specific site or sites to chemical attack. It was found that in one of the DNA fragments, pTyr2 DNA, several purine residues exhibit enhanced reactivity to diethyl pyrocarbonate (DEPC) in the absence of bound antibiotic, and that this strongly sequence specific reaction is enhanced in the presence of quite low echinomycin concentrations. The echinomycin-dependent reactivities towards DEPC of three homologous DNA fragments, chosen for their subtly different antibiotic binding characteristics, were also investigated. It was found that small changes in base sequence generate striking changes in susceptibility to modification by DEPC. The abolition of one antibiotic binding site leads to the creation of a new, intense DEPC-reactive site. In the presence of moderate concentrations of echinomycin, specific thymidine residues exhibit enhanced reactivity towards osmium tetroxide. No differences in the reactivities of the DNA fragments towards bromoacetaldehyde, S1 nuclease, dimethyl sulphate or potassium tetrachloropalladinate were observed in the presence of the antibiotic. DEPC reactions were performed on tubercidin (7-deaza-adenosine) to determine the DEPC reactive positions in situation where N-7 is inaccessible. Tubercidin was found to be generally resistant to attack by DEPC followed by treatment with base. We conclude that the bulk of structural changes induced by the binding of echinomycin to DNA do not involve Hoogsteen base pairing, but rather are due to sequence-specific unwinding of the helix in a manner which is strongly dependent on the nature of surrounding nucleotide sequences.  相似文献   

19.
Complementary DNAs (cDNAs) corresponding to three isoforms of rock bream (Oplegnathus fasciatus) Mx (RbMx1, RbMx2 and RbMx3) were cloned using RACE reactions. Analysis of deduced amino acid sequences revealed that the tripartite GTP-binding domain, the dynamine family signature and the leucine zipper repeat were present in all three rock bream Mx isoforms. Cloning of genomic DNA sequence and Southern blot analysis showed that three rock bream Mx isoforms were encoded by different genomic loci, and they were not alternative splicing variants, although some alternative splicing variants were found in RbMx1 and RbMx2. When comparing amino acid sequence identity, RbMx1 shares about 60-70% identities with other fish Mx proteins, whereas both RbMx2 and RbMx3 share slightly high identity of 70-90%. As a result of expression analysis using RT-PCR, RbMx1 was constitutively expressed in the spleen and kidney of rock bream yearling, but RbMx2 and RbMx3 were rarely detected in both organs. When injected with synthetic double-stranded RNA polyinosinic:polycytidylic acid (poly I:C), expression of all rock bream Mx isoforms was up-regulated in spleen and head kidney. RbMx1 was continuously up-regulated throughout experimental period of 72 h but RbMx2 and RbMx3 were down-regulated to almost non-detectable level at 48 h post-injection.  相似文献   

20.
Map of chartreusin and elsamicin binding sites on DNA   总被引:1,自引:0,他引:1  
X Salas  J Portugal 《FEBS letters》1991,292(1-2):223-228
Three DNA restriction fragments designated tyrT, 102-mer and 70-mer, have been used as substrates for footprinting studies using DNase I in the presence of the structurally similar antibiotics chartreusin and elsamicin A. The sequence-selective binding sites of the antibiotics can be mapped in regions which are rich in guanine + cytosine. Chartreusin and elsamicin appear to recognize and bind preferentially to sequences containing a CpG step. Regions containing a TpG step also seem to be a good binding site. The binding of elsamicin to these sites appears to be more concentration-dependent. A comparative analysis is performed of the sizes and locations of the different binding sites, aimed to infer whether the different biological effects of chartreusin and elsamicin A can be correlated to differences in their sequence-selective binding to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号