首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms regulating the balance between intestinal epithelial cell proliferation and differentiation are essential to maintaining an intact mucosal barrier. Mitogen-activated protein (MAP) kinases appear to be key transducers of extracellular signals in these pathways. The goal of this study was to investigate the regulation of MAP kinase by tumor necrosis factor α (TNFα) and epidermal growth factor (EGF) in intestinal epithelial cells. The young adult mouse colon cell line was studied for TNFα and/or EGF regulation of MAP kinase in the presence or absence of the MAP kinase kinase (MEK1) inhibitor PD 98059. Proliferation was determined by hemocytometry, and activated MAP kinase was identified by Western blot analysis, in vitro kinase assay, and confocal laser immunofluorescent microscopy. TNFα stimulated sustained nuclear MAP kinase activity, while EGF stimulated transient cytoplasmic MAP kinase activity. Changing TNFα's sustained MAP kinase activation to transient converted TNFα from an anti-proliferative to a proliferative ligand. These findings demonstrate that both TNFα and EGF activate MAP kinase in intestinal epithelial cells. The kinetics and subcellular distribution of this enzyme activity may be pivotal in the transduction of divergent cellular responses in the intestinal epithelium with implications for altered proliferative signals in inflammatory bowel disease.  相似文献   

2.
Responses to G protein-coupled receptor stimulation may be mediated by paracrine factors. We have developed a coculture system to study paracrine regulation of migration of gastric epithelial (AGS) cells after stimulation of gastrin-CCK(B) receptors. In cells expressing this receptor, G-17 stimulated migration by activation of protein kinase C. However, G-17 also stimulated the migration of cells expressing green fluorescent protein, but not the receptor, when they were cocultured with receptor-expressing cells consistent with activation of paracrine signals. The use of various pharmacological inhibitors indicated that gastrin stimulated migration via activation of the EGF receptor (EGR-R), the erbB-2 receptor tyrosine kinase, and the MAP kinase pathway. However, gastrin also released fibroblast growth factor (FGF)-1, and migration was inhibited by the FGF receptor tyrosine kinase inhibitor SU-5402. Flow cytometry indicated that in both cell types, gastrin increased MAP kinase via activation of EGF-R but not FGF-R1 or erbB-2. We conclude that gastrin-CCK(B) receptors stimulate epithelial cell migration partly via paracrine mechanisms; transactivation of EGF-R is only one component of the paracrine pathway.  相似文献   

3.
4.
The epidermal growth factor (EGF) receptor mediates the effects of both EGF and transforming growth factor α (TGFα). Recent data suggested that EGF acts as a partial agonist/antagonist in hepatocytes, TGFα exerting a larger maximal stimulation of DNA synthesis than EGF. To further study the mechanisms involved in mediating the different effects of EGF and TGFα, we have examined receptor binding of the two growth factors and their action on the p42/p44 mitogen-activated protein (MAP) kinase activity in hepatocytes. Single-ligand concentration curves and competition experiments showed that the binding affinity to a common population of surface binding sites was about 20-fold lower for TGFα than for EGF. MAP kinase activity responded to EGF and TGFα with different kinetics. While the two agents produced almost identical acute (5 min) stimulation (peak about fivefold), TGFα produced a more sustained MAP kinase activity than EGF. The difference between EGF and TGFα was still detectable 24 h after growth factor addition. The results show that in hepatocytes a lower receptor affinity of TGFα, as compared to EGF, is associated with a more sustained activation of the MAP kinase and a greater efficacy in the stimulation of DNA synthesis. This suggests that differential interaction of these two agents with the EGF receptor results in differences in the downstream events elicited at a given level of receptor occupancy. The data also are compatible with a role of a prolonged MAP kinase activity in the mitogenic effects of EGF and TGFα. J. Cell. Physiol. 175:10–18, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Insulin-like growth factor-binding protein-3 (IGFBP-3) is inhibitory to the growth of many breast cancer cells in vitro; however, a high level of expression of IGFBP-3 in breast tumors correlates with poor prognosis, suggesting that IGFBP-3 may be associated with growth stimulation in some breast cancers. We have shown previously in MCF-10A breast epithelial cells that chronic activation of Ras-p44/42 mitogen-activated protein (MAP) kinase confers resistance to the growth-inhibitory effects of IGFBP-3 (Martin, J. L., and Baxter, R. C. (1999) J. Biol. Chem. 274, 16407-16411). Here we show that, in the same cell line, IGFBP-3 potentiates DNA synthesis and cell proliferation stimulated by epidermal growth factor (EGF), a potent activator of Ras. A mutant of IGFBP-3, which fails to translocate to the nucleus and has reduced ability to cell-associate, similarly enhanced EGF action in these cells. By contrast, the structurally related IGFBP-5, which shares many functional features with IGFBP-3, was slightly inhibitory to DNA synthesis in the presence of EGF. IGFBP-3 primes MCF-10A cells to respond to EGF because pre-incubation caused a similar degree of EGF potentiation as co-incubation. In IGFBP-3-primed cells, EGF-stimulated EGF receptor phosphorylation at Tyr-1068 was increased relative to unprimed cells, as was phosphorylation and activity of p44/42 and p38 MAP kinases, but not Akt/PKB. Partial blockade of the p44/42 and p38 MAP kinase pathways abolished the potentiation by IGFBP-3 of EGF-stimulated DNA synthesis. Collectively, these findings indicate that IGFBP-3 enhances EGF signaling and proliferative effects in breast epithelial cells via increased EGF receptor phosphorylation and activation of p44/42 and p38 MAP kinase signaling pathways.  相似文献   

6.
We previously reported that epidermal growth factor (EGF) induced the disruption of gap junctional communication (gjc) and serine phosphorylation of connexin43 (Cx43) in T51B rat liver epithelial cells. However, the cascade of events linking EGF receptor activation to these particular responses have not been fully characterized. Furthermore, the serine kinase(s) acting directly on Cx43 remain unidentified. In the current study, we demonstrate that downmodulation of 12-0-tetradecanoylphorbol 13-acetate (TPA)-sensitive protein kinase C (PKC) activity does not affect EGF's ability to reduce junctional permeability or phosphorylate Cx43 in T51B cells. EGF in the presence or absence of chronic TPA treatment stimulated marked increases in Cx43 phosphorylation on numerous sites as determined by two-dimensional tryptic phosphopeptide mapping. Computer-assisted sequence analysis of Cx43 identified several protein kinase phosphorylation consensus sites including two sites for mitogen-activated protein (MAP) kinase. EGF stimulated activation of MAP kinase in a time- and dose-dependent manner where the kinetics of kinase activity corroborated its possible involvement in mediating EGF's effects. Moreover, purified MAP kinase directly phosphorylated Cx43 on serine residues in vitro. Two-dimensional tryptic and chymotryptic phosphopeptide mapping demonstrated that the in vitro phosphopeptides represented a specific subset of the in vivo phosphopeptides produced in response to EGF after chronic TPA treatment. Therefore, EGF-induced disruption of gjc and phosphorylation of Cx43 may be mediated in part by MAP kinase in vivo.  相似文献   

7.
Heparin and heparan are potent inhibitors of vascular smooth muscle cell (VSMC) proliferation. To investigate the mechanisms by which heparin suppresses growth factor stimulated mitogenesis, the present experiments investigated the effects of heparin on platelet-derived growth factor (PDGF) stimulated signal transduction pathways. Heparin treatment substantially inhibited PDGF-BB stimulated rat VSMC growth. Western analysis showed a 30 min PDGF-BB treatment of VSMC induced the tyrosine phosphorylation of multiple protein bands; cotreatment with heparin inhibited mitogen-activated protein (MAP) kinase tyrosine phosphorylation but had little effect on PDGF receptor tyrosine phosphorylation. In-gel kinase assays demonstrated that heparin inhibited PDGF-BB stimulated MAP kinase activity at late (25 min) but not early (10 min) time points. These data indicate that heparin does not inhibit the initial signalling events after PDGF-BB binding but instead acts through an alternate mechanism to inhibit MAP kinase. To investigate if heparin directly stimulates tyrosine phosphatase-mediated suppression of MAP kinase, we treated VSMC with orthovanadate, a tyrosine phosphatase inhibitor. Heparin inhibited MAP kinase tyrosine phosphorylation after orthovanadate treatment, indicating that heparin does not suppress MAP kinase by enlistment of a tyrosine phosphatase. Experiments were performed to investigate signalling pathways upstream of MAP kinase. To determine if protein kinase C (PKC) mediates PDGF-BB, serum, and EGF stimulation of MAP kinase, we treated VSMC overnight with phorbol ester (PMA) to downregulate PKC. Abolition of conventional and novel PKC activity significantly suppressed both serum and PDGF-BB induced MAP kinase activation, indicating protein kinase C is an important mediator for these mitogens. In contrast, downregulation of these PKC isoforms had little effect on EGF stimulation of MAP kinase. As heparin inhibits PDGF and serum but not EGF stimulation of MAP kinase, these data precisely correlate heparin inhibition of MAP kinase with activation through PKC-dependent pathways. Immunoprecipitation analysis found that heparin inhibited serum, PMA, and PDGF but not EGF induced raf-1 phosphorylation. These studies demonstrate that heparin did not block PDGF-BB receptor activation, which initiates the mitogenic signalling cascade. Heparin did inhibit specific postreceptor second messenger signals, such as the late phase activation of MAP kinase, which may be mediated by suppression of PKC-dependent pathways. J. Cell. Physiol. 172:69–78, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
9.
10.
The beta-PDGF receptor induces neuronal differentiation of PC12 cells.   总被引:19,自引:0,他引:19       下载免费PDF全文
Expression of the mouse beta-PDGF receptor by gene transfer confers PDGF-dependent and reversible neuronal differentiation of PC12 pheochromocytoma cells similar to that observed in response to NGF and basic FGF. A common property of the PDGF, NGF, and basic FGF-induced differentiation response is the requirement for constant exposure of cells to the growth factor. To test the hypothesis that a persistent level of growth factor receptor signaling is required for the maintenance of the neuronal phenotype, we examined the regulation of the serine/threonine-specific MAP kinases after either short- (10 min) or long-term (24 h) stimulation with growth factors. Mono Q FPLC resolved two peaks of growth factor-stimulated MAP kinase activity that coeluted with tyrosine phosphorylated 41- and 43-kDa polypeptides. MAP kinase activity was markedly stimulated (approximately 30-fold) within 5 min of exposure to several growth factors (PDGF, NGF, basic FGF, EGF, and IGF-I), but was persistently maintained at 10-fold above basal activity after 24 h only by the growth factors that also induce PC12 cell differentiation (PDGF, NGF, and basic FGF). Thus the beta-PDGF receptor is in a subset of tyrosine kinase-encoded growth factor receptors that are capable of maintaining continuous signals required for differentiation of PC12 cells. These signals include the constitutive activation of cytoplasmic serine/threonine protein kinases.  相似文献   

11.
12.
Regulation of hepatic energy metabolism by epidermal growth factor   总被引:2,自引:0,他引:2  
Employing the non-recirculating perfused rat liver preparation, we have investigated the regulation of hepatic gluconeogenesis, and metabolic fluxes through the tricarboxylic acid cycle and 2-oxoglutarate dehydrogenase reaction by epidermal growth factor (EGF) which mimics the actions of both insulin and Ca(2+)-mobilizing hormones (e.g. vasopressin). As monitored by the rate of 14CO2 production from [2-14C]pyruvate (0.5 mM), EGF (10 nM) transiently stimulated the activity of the tricarboxylic acid cycle. EGF also transiently stimulated hepatic gluconeogenesis from pyruvate. The transient stimulation of tricarboxylic acid cycle activity and gluconeogenesis were accompanied by an increase in perfusate Ca2+ content indicating that EGF also altered hepatic Ca2+ fluxes. EGF-elicited stimulation of gluconeogenesis was, at least in part, the result of a transient (50%) inhibition of pyruvate kinase activity. Likewise, EGF-mediated stimulation of tricarboxylic acid cycle activity can, in part, be attributed to EGF-elicited stimulation of metabolic flux through the mitochondrial, Ca(2+)-sensitive, 2-oxoglutarate dehydrogenase reaction. The regulation of hepatic metabolism by EGF appears to be the manifestation of alteration in cellular Ca2+ content since in experiments performed under conditions known to abolish the ability of EGF to alter cytosolic free-Ca2+ concentrations, i.e. in livers of pertussis-toxin-treated rats, EGF did not alter either perfusate Ca2+ content or any of the metabolic parameters monitored. Additionally, experiments involving pulsatile infusion of either EGF or phenylephrine into livers demonstrated that, unlike the alpha 1-adrenergic receptor, homologous desensitization of the EGF receptor occurs. Such a homologous desensitization of the EGF receptor can explain the transient nature of EGF-elicited stimulation of various metabolic processes. Since protein kinase C activation by EGF can lead to receptor desensitization, experiments were performed with phorbol esters which either activate or do not alter protein kinase C activity. While the inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not modulate the hepatic actions of EGF, activation of protein kinase C by 4 beta-phorbol 12-myristate 13-acetate (70 nM) abolished the ability of EGF to stimulate gluconeogenesis, tricarboxylic acid cycle activity and metabolic flux through the 2-oxoglutarate dehydrogenase complex.  相似文献   

13.
14.
15.
In the EAhy926 endothelial cell line, UTP, ATP, and forskolin, but not UDP and epidermal growth factor, inhibited tumor necrosis factor alpha (TNFalpha)- and sorbitol stimulation of the stress-activated protein kinases, JNK, and p38 mitogen-activated protein (MAP) kinase, and MAPKAP kinase-2, the downstream target of p38 MAP kinase. In NCT2544 keratinocytes, UTP and a proteinase-activated receptor-2 agonist caused similar inhibition, but in 13121N1 cells, transfected with the human P2Y(2) or P2Y(4) receptor, UTP stimulated JNK and p38 MAP kinase activities. This suggests that the effects mediated by P2Y receptors are cell-specific. The inhibitory effects of UTP were not due to induction of MAP kinase phosphatase-1, but were manifest upstream in the pathway at the level of MEK-4. The inhibitory effect of UTP was insensitive to the MEK-1 inhibitor PD 098059, changes in intracellular Ca(2+) levels, or pertussis toxin. Acute phorbol 12-myristate 13-acetate pretreatment also inhibited TNFalpha-stimulated SAP kinase activity, while chronic pretreatment reversed the effects of UTP. Furthermore, the protein kinase C inhibitors Ro318220 and Go6983 reversed the inhibitory action of UTP, but GF109203X was ineffective. These results indicate a novel mechanism of cross-talk regulation between P2Y receptors and TNFalpha-stimulated SAP kinase pathways in endothelial cells, mediated by Ca(2+)-independent isoforms of protein kinase C.  相似文献   

16.
17.
18.
The signal transduction pathway by which insulin stimulates glucose transport is largely unknown, but a role for tyrosine and serine/threonine kinases has been proposed. Since mitogen-activated protein (MAP) kinase is activated by insulin through phosphorylation on both tyrosine and threonine residues, we investigated whether MAP kinase and its upstream regulator, p21ras, are involved in insulin-mediated glucose transport. We did this by examining the time- and dose-dependent stimulation of glucose uptake in relation to the activation of Ras-GTP formation and MAP kinase by thrombin, epidermal growth factor (EGF), and insulin in 3T3-L1 adipocytes. Ras-GTP formation was stimulated transiently by all three agonists, with a peak at 5 to 10 min. Thrombin induced a second peak at approximately 30 min. The activation of p21ras was paralleled by both the phosphorylation and the activation of MAP kinase: transient for insulin and EGF and biphasic for thrombin. However, despite the strong activation of Ras-GTP formation and MAP kinase by EGF and thrombin, glucose uptake was not stimulated by these agonists, in contrast to the eightfold stimulation of 2-deoxy-D-[14C]glucose uptake by insulin. In addition, insulin-mediated glucose transport was not potentiated by thrombin or EGF. Although these results cannot exclude the possibility that p21ras and/or MAP kinase is needed in conjunction with other signaling molecules that are activated by insulin and not by thrombin or EGF, they show that the Ras/MAP kinase signaling pathway alone is not sufficient to induce insulin-mediated glucose transport.  相似文献   

19.
The implication of MAP kinases in the proliferation control of pancreatic cancer cells is still unknown. This study was undertaken to examine the contribution of the p44/p42 and p38 MAP kinases in the mitogenic response to epidermal growth factor (EGF) and bombesin in human pancreatic cancer cells, MIA PaCa-2 and PANC-1. Data indicate that EGF and bombesin stimulated growth of both cell lines. In MIA PaCa-2 cells, EGF and bombesin stimulated the in gel activation of p38 while p44/p42 kinases exhibited high basal activity and no response to stimuli. Growth and p38 activation were inhibited by genistein, wortmannin, PD98059 and SB203580, specific inhibitors of tyrosine kinase, phosphatidylinositol 3-kinase, MEK-1 and p38 kinases, respectively. In PANC-1 cells, EGF and bombesin stimulated p42 in gel activation; p44 remained highly activated and unresponsive to stimuli and p38 did not respond. Stimulated growth and p42 activation were inhibited by genistein, wortmannin and PD98059. Estimation of MAPK activities with a specific anti-active MAP kinase antibody indicated, however, that EGF increased the intensity of the bands corresponding to p42 and p44 MAP kinases in both cell lines, indicating that the mitogenic factor can regulate MAP kinase activity. Data also pointed out that ATP is sufficient to increase MAP kinase activity within the in gel assay technique and may thus explain the discrepancies existing between the in gel assay data and those obtained with the anti-active MAP kinase antibody.  相似文献   

20.
Our goal was to evaluate the role of epidermal growth factor and injury on the expression of integrin subunits alpha6(alpha6) and beta4(beta4). An in vitro wound model was used to evaluate corneal wound repair and cellular migration. Primary rabbit corneal epithelial cell cultures were serum-starved and injured in the presence or absence of EGF or tyrphostin AG1478, an inhibitor of EGF receptor kinase activity. Repair was monitored morphologically and expression was analyzed using in situ hybridization and immunohistochemistry accompanied by confocal microscopy. The addition of EGF to cell cultures induced a dose-dependent increase in beta4 mRNA expression but the constitutive expression of alpha6 was several fold greater. In the wounded cultures there was a rapid change in expression at the edge of the wound that was enhanced with EGF. In our model there was an increase in beta4 and alpha6 protein in migrating cells. Changes in integrin expression were accompanied by a transient increase in activation of the EGF receptor. The addition of tyrphostin inhibited migration of cells and wound repair, the activation of the EGF receptor and phosphorylation of beta4 in the cytoplasm. These data indicate that the activation of the EGF receptor plays a critical role in the regulation of integrin receptors and the mediation of cellular migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号