首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Plant growth involves pressure-driven cell enlargement generally accompanied by deposition of new cell wall. New polysaccharides are secreted by the plasma membrane but their subsequent entry into the wall is obscure. Therefore, polysaccharides and gold colloids of various sizes were presented to the inner wall face as though they were secreted by the plasma membrane. METHODS: Primary cell walls were isolated from growing internodes of Chara corallina and one end was attached to a glass capillary. Solutions of dextran or suspensions of gold colloids were pushed into the lumen by oil in the capillary. The oil did not enter the wall, and the solution or suspension was pressed against the inner wall face, pressurized at various 'artificial' P (turgor pressure), and polymer or colloid movement through the wall was monitored. KEY RESULTS: Interstices in the wall matrix had a diameter of about 4.6 nm measured at high P with gold colloids. Small solute (0.8 nm) readily moved through these interstices unaffected by P. Dextrans of 3.5 nm diameter moved faster at higher P while dextran of 9 nm scarcely entered unless high P was present. Dextran of 11 nm did not enter unless P was above a threshold, and dextran of 27 nm did not enter at P as high as 0.5 MPa. The walls filtered the dextrans, which became concentrated against the inner wall face, and most polymer movement occurred after P stabilized and bulk flow ended. CONCLUSIONS: P created a steep gradient in concentration and mechanical force at the inner wall face that moved large polymers into small wall openings apparently by starting a polymer end or deforming the polymer mechanically at the inner wall face. This movement occurred at P generally accepted to extend the walls for growth.  相似文献   

2.
Pectin, a normal constituent of cell walls, caused growth rates to accelerate to the rates in living cells when supplied externally to isolated cell walls of Chara corallina. Because this activity was not reported previously, the activity was investigated. Turgor pressure (P) was maintained in isolated walls or living cells using a pressure probe in culture medium. Pectin from various sources was supplied to the medium. Ca and Mg were the dominant inorganic elements in the wall. EGTA or pectin in the culture medium extracted moderate amounts of wall Ca and essentially all the wall Mg, and wall growth accelerated. Removing the external EGTA or pectin and replacing with fresh medium returned growth to the original rate. A high concentration of Ca2+ quenched the accelerating activity of EGTA or pectin and caused gelling of the pectin, physically inhibiting wall growth. Low pH had little effect. After the Mg had been removed, Ca-pectate in the wall bore the longitudinal load imposed by P. Removal of this Ca caused the wall to burst. Live cells and isolated walls reacted similarly. It was concluded that Ca cross-links between neighbouring pectin molecules were strong wall bonds that controlled wall growth rates. The central role of Ca-pectate chemistry was illustrated by removing Ca cross-links with new pectin (wall "loosening"), replacing vacated cross-links with new Ca2+ ("Ca2+-tightening"), or adding new cross-links with new Ca-pectate that gelled ("gel tightening"). These findings establish a molecular model for growth that includes wall deposition and assembly for sustained growth activity.  相似文献   

3.
Recent work showed that polygalacturonate (pectate) chemistry controlled the growth rate of the large-celled alga Chara corallina when turgor pressure (P) was normal (about 0.5 MPa). The mechanism involved calcium withdrawal from the wall by newly supplied pectate acting as a chelator. But P itself can affect growth rate. Therefore, pectate chemistry was investigated at various P. A pressure probe varied P in isolated walls, varying the tension on the calcium pectate cross-links bearing the load of P. When soluble pectate was newly supplied, the wall grew irreversibly but the pectate was inactive below a P of 0.2 MPa, indicating that tension was required in the existing wall before new pectate acted. It was suggested that the tension distorted some of the wall pectate (the dominant pectin), weakening its calcium cross-links and causing the calcium to be preferentially lost to the new pectate, which was not distorted. The preferential loss provided a molecular mechanism for loosening the wall structure, resulting in faster growth. However, the resulting relaxation of the vacated wall pectate would cause calcium to be exchanged with load-bearing calcium pectate nearby, auto-propagating throughout the wall for long periods. There is evidence for this effect in isolated walls. In live cells, there is also evidence that auto-propagation is controlled by binding the newly supplied pectate (now calcium pectate) to the wall and/or by additional Ca(2+) entering the wall structure. A tension-dependent cycle of pectate chemistry thus appeared to control growth while new wall was deposited as a consequence.  相似文献   

4.
Calcium pectate chemistry was reported to control the growth rate of cells of Chara corallina , and required turgor pressure ( P ) to do so. Accordingly, this chemistry should account for other aspects of growth, particularly the ability of plants to compensate for brief exposure to low P , that is, to 'store' growth. Live Chara cells or isolated walls were attached to a pressure probe, and P was varied. Low P caused growth to be inhibited in live cells, but when P returned to normal (0.5 MPa), a flush of growth completely compensated for that lost at low P for as long as 23–53 min. This growth storage was absent in isolated walls, mature cells and live cells exposed to cold, indicating that the cytoplasm delivered a metabolically derived growth factor needing P for its action. Because the cytoplasm delivered pectate needing P for its action, pectate was supplied to isolated walls at low P as though the cytoplasm had done so. Growth was stored while otherwise none occurred. It was concluded that a P -dependent cycle of calcium pectate chemistry not only controlled growth rate and new wall deposition, but also accounted for stored growth.  相似文献   

5.
Sugimura Y  Nitta I 《Protoplasma》2007,231(1-2):123-125
Summary. When calcium carbonate crystals are formed in mulberry (Morus abla) idioblasts, they are deposited in newly formed cell wall sacs. The initial cytological events leading to cell wall sac formation were observed in the distal end of young idioblasts and tentatively categorized into four stages. The first indication of formation was the separation of the innermost cell wall layer from the cell wall, which is followed by the deposition of egg-shaped polysaccharide on the inner cell wall surface. The size of the deposit area increased, while the thickness of the cell wall significantly decreased during the next stage. Finally, the condensed cellulosic lamella was invaginated into the deposition area, resulting in the formation of an elongated cell wall sac. The internal cell wall sac was composed of numerous fibers with different morphologies. Application of gelatin-methenamine-silver staining allowed us to observe the spatial distribution of cellulosic polysaccharides as electron-dense images. Correspondence and reprints: Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.  相似文献   

6.
On the Cytochemistry of Cell Wall Formation in Poplar Trees   总被引:2,自引:0,他引:2  
Abstract: The ultrastructure of cell walls and the mechanisms of cell wall formation are still not fully understood. The objective of our study was therefore to obtain additional fine structural details on the deposition of cell wall components during the differentiation of xylem cells in hybrid aspen ( Populus tremula L. × P. tremuloides Michx.) we used as a model tree. At the electron microscope level, PATAg staining revealed a successive deposition of polysaccharides with increasing distance from the cambium. Staining with potassium permanganate and UV microspectrophotometry showed that the cell walls were lignified, with some delay to the deposition of polysaccharides. Immunogold labelling of three lignin types in developing cell walls varied with progressive deposition of cell wall layers. Condensed lignin subunits were localized in corners of cells adjacent to the cambium prior to S1 formation, whereas non-condensed lignin subunits became labelled only in later stages - in secondary walls near cell corners and simultaneously with the completion of S1 formation. As S2 polysaccharide deposition progressed, the labelling extended towards the lumen. Labelling of peroxidases revealed their presence in cell corner regions of young xylem cells, still lacking a secondary wall, implying that peroxidases are incorporated into the developing cell wall at early developmental stages. A weak labelling of middle lamella regions and secondary walls could also be seen at later stages. The results are discussed in relation to current knowledge on the succession of polysaccharide and lignin deposition in woody cell walls.  相似文献   

7.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

8.
9.
Pectin and cellulose are major components of most primary cell walls, yet little is known about the way in which they interact either during assembly or in subsequent functional performance of the wall. As a mimic of cell wall assembly, we studied the formation of molecular composites formed by deposition of cellulose from Acetobacter xylinus into pectin/calcium systems, and the molecular, architectural and mechanical properties of the composites obtained. The formation of interpenetrating cellulose/pectin composite networks (as envisaged in current models for primary cell walls) required a pre-existing, but not too strong, pectin network. For pectin either in solution or strongly networked, phase separation from cellulose occurred, providing two physical models for the formation of middle lamellae. Composite networks showed no evidence of direct molecular interaction between the components, but pectin networks became more aggregated following deposition of cellulose into them. The shear strength under small deformation conditions for cellulose/pectin composites was very similar to that of cellulose alone. In contrast, under uniaxial tension, extensibility was greatly increased and stiffness decreased. These major changes were due to the effect of pectin on cellulose network architecture at deposition, as they were maintained upon removal of the pectin component. These results show that the presence and physical state of pectin at the time of cellulose deposition in muro may be a significant determinant of subsequent extensibility without compromising strength.  相似文献   

10.
Pectin is a normal constituent of cell walls of green plants. When supplied externally to live cells or walls isolated from the large-celled green alga Chara corallina, pectin removes calcium from load-bearing cross-links in the wall, loosening the structure and allowing it to deform more rapidly under the action of turgor pressure. New Ca(2+) enters the vacated positions in the wall and the externally supplied pectin binds to the wall, depositing new wall material that strengthens the wall. A calcium pectate cycle has been proposed for these sub-reactions. In the present work, the cycle was tested in C. corallina by depriving the wall of external Ca(2+) while allowing the cycle to run. The prediction is that growth would eventually be disrupted by a lack of adequate deposition of new wall. The test involved adding pectate or the calcium chelator EGTA to the Ca(2+)-containing culture medium to bind the calcium while the cycle ran in live cells. After growth accelerated, turgor and growth eventually decreased, followed by an abrupt turgor loss and growth cessation. The same experiment with isolated walls suggested the walls of live cells became unable to support the plasma membrane. If instead the pectate or EGTA was replaced with fresh Ca(2+)-containing culture medium during the initial acceleration in live cells, growth was not disrupted and returned to the original rates. The operation of the cycle was thus confirmed, providing further evidence that growth rates and wall biosynthesis are controlled by these sub-reactions in plant cell walls.  相似文献   

11.
Fourier-transform infrared (FT-IR) microspectroscopy was used to investigate both the chemical composition of, and the effects of an applied strain on, the structure of the Chara corallina cell wall. The inner layers of the cell wall are known to have a transverse cellulose orientation with a gradient through the thickness to longitudinal orientation in the older layers. In both the native state and following the removal of various biopolymers by a sequential extraction infrared dichroism was used to examine the orientation of different biopolymers in cell-wall samples subjected to longitudinal strain. In the Chara system, cellulose microfibrils were found to be aligned predominantly transverse to the long axis of the cell and became orientated increasingly transversely as longitudinal strain increased. Simultaneously, the pectic polysaccharide matrix underwent molecular orientation parallel to the direction of strain. Following extraction in CDTA, microfibrils were orientated transversely to the strain direction, and again the degree of transverse orientation increased with increasing strain. However, the pectic polysaccharides of the matrix were not detected in the dichroic difference spectra. After a full sequential extraction, the cellulose microfibrils, now with greatly reduced crystallinity, were detected in a longitudinal direction and they became orientated increasingly parallel to the direction of strain as it increased.  相似文献   

12.
Ginkgo biloba exocarp polysaccharide (GBEP) was obtained by hot water extraction, the crude polysaccharide was deproteinized by Sevag method and fractionized by a DEAE Sepharose fast flow anion-exchange column. Five fragments were obtained, including neutral polysaccharide (GBEP-N) and four acidic polysaccharides (GBEP-A1, GBEP-A2, GBEP-A3 and GBEP-A4). GBEP-N and GBEP-A3 were further purified by Superdex 200 gel column chromatography. The resulted two fractions GBEP-NN, and GBEP-AA were characterized by FT-IR, and HPGFC (high pressure gel filtration chromatography). Monosaccharide composition was determined by RP-HPLC method of precolumn derivatization with 1-phenyl-3-5-pyrazolone. GBEP-NN was mainly composed of rhamnose, arabinose, mannose, glucose and galactose, while GBEP-AA was mainly made up of mannose, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose. The crude GBEP exhibited certain antioxidant activity. At the concentration of 5 mg/mL, the hydroxyl radical scavenging effect of GBEP was 90.52%, greater than 77.37% for the positive control ascorbic acid.  相似文献   

13.
Summary Cultivation ofFunaria protonemata under plasmolytic or slightly subplasmolytic conditions initially causes a cessation of growth which is accompanied by a transient disappearance (or strong reduction in frequency, respectively) of putative cellulose synthesizing particle rosettes in the plasma membrane. Simultaneously, the formation and exocytosis of cell wall materialsecreting Golgi vesicles is slowed down. The latter process does not become apparent for several hours, though the reduction in activity can be proved indirectly. As a consequence of the imbalance between exocytosis, cell wall material accumulates in the plasmolytic space, generally at the cell tip. This indicates that the pattern of local, polar deposition of cell wall formation and cell elongation, membrane debris as well as wall material is maintained for some time. Later, however, the whole protoplast may become covered by new wall layers. Potentially growing filament tips and the distal region of nontip cells increase in diameter after longer cultivation in subplasmolytic conditions. It is suggested that normal wall growth results from a softening of the existing wall, its stretching and simultaneous stabilization by the apposition of new wall layers. We believe that the swelling is caused by a change in the equilibrium between the obviously less affected softening process and the imperfect stabilization by new wall layers because the wall layers which are formed at reduced turgor pressure are looser than normal and may have a changed composition.Kinetin-induced buds do not develop under plasmolytic conditions. Instead, spiral filaments are formed which readily give rise to buds when the osmotic value of the (kinetin-containing) medium is normalized. The results show that plasmolysis affects the expression of the developmental program rather than its initiation or maintenance.  相似文献   

14.
The class of cell wall polysaccharides that undergoes the most extensive modification during tomato (Lycopersicon esculentum) fruit ripening is pectin. De-esterification of the polygalacturonic acid backbone by pectin methylesterase facilitates the depolymerization of pectins by polygalacturonase II (PGII). To investigate the spatial aspects of the de-esterification of cell wall pectins and the subsequent deposition of PGII, we have used antibodies to relatively methylesterified and nonesterified pectic epitopes and to the PGII protein on thin sections of pericarp tissue at different developmental stages. De-esterification of pectins and deposition of PGII protein occur in block-like domains within the cell wall. The boundaries of these domains are distinct and persistent, implying strict, spatial regulation of enzymic activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins strongly associated with cell walls of pericarp tissue at each stage of fruit development show ripening-related changes in this protein population. Western blots of these gels with anti-PGII antiserum demonstrate that PGII expression is ripening-related. The PGII co-extracts with specific pectic fractions extracted with imidazole or with Na2CO3 at 0[deg]C from the walls of red-ripe pericarp tissue, indicating that the strong association between PGII and the cell wall involves binding to particular pectic polysaccharides.  相似文献   

15.
Analysis of cell wall polysaccharide composition of embryogenic and non-embryogenic calli obtained from hypocotyl and petiole explants from Medicago arborea L. revealed significant differences. For calli induced from both hypocotyls and petioles, levels of total sugars, pectins, and hemicelluloses were higher in embryogenic than in non-embryogenic calli. Whereas in the residual cellulose fraction, the highest levels of sugar were detected in non-embryogenic calli. When comparing the two donor sources of callus explants, the highest total sugar levels were detected in embryogenic calli induced from petioles, mainly in the pectin fraction and to a lesser extent in the hemicellulose fraction. Moreover, analysis of uronic acids revealed higher levels in embryogenic calli, primarily in the pectin fraction. Analysis of those sugars associated with cell walls of calli suggested that these polysaccharides consisted of pectic polysaccharides and glucans, and that their levels were higher in embryogenic than non-embryogenic calli.  相似文献   

16.
Green and red tomato pericarp tissues were subjected to stress-relaxation analyses to evaluate their physical properties. Significant decreases in the initial stress, minimum stress-relaxation and maximum stress-relaxation times in the red tissues predict the losses of both viscosity and elasticity in the tissue. Cell walls of red fruit yielded more water-soluble polysaccharides and less pectin, hemicelluloses and cellulose. Average molecular mass of pectin determined by gel filtration chromatography was similar in the green and red, but molecular mass of hemicellulose of red fruit walls was reduced to 50% of that of the green fruit. The decreases in the amount of hemicellulose B and in the average molecular mass were associated primarily with the degradation of xylo-glucans. These data demonstrate that pectin solubilization, depolymerization of xyloglucans and over-all changes in the quantity of cell wall polysaccharide fractions contribute to tomato fruit softening.  相似文献   

17.
The pectic enzymes are a diverse group of enzymes that collectively degrade pectin, a mixture of highly heterogeneous and branched polysaccharides rich in d-galacturonic acids forming a major component of the primary cell wall of plants. This review covers key enzymes that function to deconstruct the “ramified region” of pectin. The enzymes include glycoside hydrolases and polysaccharide lyases that degrade complex pectic domains consisting of rhamnogalacturonans, xylogalacturonans, and other heterogeneous polymers. The chemical nature of the pectic substrates for the enzymes is presented. The biochemical properties of the enzymes, the mechanisms of enzyme actions, and related structures and functions, are described. Applications of these enzymes in fruit juice processing and in the production of bioactive compounds, as well as their technological relevance to the deconstruction of cell wall structures for biomass conversion are discussed.  相似文献   

18.
细胞壁是一种复杂的动态网络结构,在植物生长发育、胁迫应答和免疫抗性过程中起着重要的调控和防御作用。果胶(pectin)是细胞初生壁结构中多糖的主要成分之一;其中,同型半乳糖醛酸聚糖(HG)是果胶多糖组分中含量最丰富的线性聚合物。HG的甲基酯化程度变化会导致其酶解形成凝胶,从而影响果胶结构的稳定性。果胶甲酯酶抑制蛋白(PMEIs)通过翻译后机制调控果胶甲酯酶(PMEs)活性,微调果胶多糖甲酯化修饰平衡后,维持细胞壁的完整性和生物力学特性。研究发现,PMEI-PME互作调控果胶甲酯化修饰的稳态是决定细胞黏附、细胞壁硬度和弹性以及器官形态发生的关键因素,同时也是细胞壁应对逆境、释放抗性信号和免疫防御的分子模式。主要对PMEIs在调节植物器官发育过程和应对不同胁迫因子发挥的抗逆功能及调控机制等最新研究进展作出综述。鉴于PMEIs在木本植物中的体内生理活性和调控机制仍有待探索,可为后续填补该领域的研究空白提供理论依据和策略参考。  相似文献   

19.
Toole GA  Smith AC  Waldron KW 《Planta》2002,214(3):468-475
Single large internode cells of the charophyte (giant alga) Chara corallina were dissected to give sheets of cell wall, which were then notched and their mechanical properties in tension determined. The cells were subjected to a thermal treatment in excess water (cf. cooking), which had little effect on strength but increased the stiffness, contrasting with the behaviour of higher-plant tissues. Extraction in CDTA (cyclohexane-trans-1,2-diamine-N,N,N',N'-tetraacetate) or 4 M KOH reduced the strength from 17 MPa to 10 MPa, although sequential extraction in CDTA and 4 M KOH reduced the strength further to 4 MPa. The stiffness decreased from 500 MPa to 300 MPa on extraction in CDTA or 4 M KOH, while falling to 70 MPa after extraction in CDTA followed by 4 M KOH. Conventional sequential extraction in CDTA, Na2CO3 at 1 degrees C and 20 degrees C, and KOH at 0.5 M, 1 M, 2 M and 4 M caused a gradual decrease in stiffness and strength after the CDTA treatment to the same lower values. This result is in keeping with mechanical properties for plant tissues, but in contrast to the removal of pectic polysaccharides from model cell wall systems, which does not reduce the stiffness.  相似文献   

20.
Plant cell growth is controlled by the balance between turgor pressure and the extensibility of the cell wall. Several distinct classes of wall polysaccharides and their interactions contribute to the architecture and the emergent features of the wall. As a result, remarkable tensile strength is achieved without relinquishing extensibility. The control of growth and development does not only require a precisely regulated biosynthesis of cell wall components, but also constant remodeling and modification after deposition of the polymers. This is especially evident given the fact that wall deposition and cell expansion are largely uncoupled. Pectins form a functionally and structurally diverse class of galacturonic acid-rich polysaccharides which can undergo abundant modification with a concomitant change in physicochemical properties. This review focuses on homogalacturonan demethylesterification catalyzed by the ubiquitous enzyme pectin methylesterase (PME) as a growth control module. Special attention is drawn to the recently discovered role of this process in primordial development in the shoot apical meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号