首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
(23S)-25-Dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) functions an antagonist of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells [J. Biol. Chem. 274 (1999) 16392]. We examined the effect of vitamin D antagonist, TEI-9647, on osteoclast formation induced by 1alpha,25-(OH)(2)D(3) from bone marrow cells of patients with Paget's disease. TEI-9647 itself never induced osteoclast formation even at 10(-6)M, but dose-dependently (10(-10) to 10(-6)M) inhibited osteoclast formation induced by physiologic concentrations of 1alpha,25-(OH)(2)D(3) (41 pg/ml, 10(-10)M) from bone marrow cells of patients with Paget's disease. At the same time, 10(-8)M of TEI-9647 alone did not cause 1alpha,25-(OH)(2)D(3) dependent gene expression, but almost completely suppressed TAF(II)-17, a potential coactivator of VDR and 25-hydroxyvitamin D(3)-24-hydroxylase (25-OH-D(3)-24-hydroxylase) gene expression induced by 10(-10)M 1alpha,25-(OH)(2)D(3) in bone marrow cells of patients with Paget's disease. Moreover, TEI-9647 dose-dependently inhibited bone resorption induced by 10(-9)M 1alpha,25-(OH)(2)D(3) by osteoclasts produced by RANKL and M-CSF treatment of measles virus nucleocapsid gene transduced bone marrow cells. These results suggest that TEI-9647 acts directly on osteoclast precursors and osteoclasts, and that TEI-9647 may be a novel agent to suppress the excessive bone resorption and osteoclast formation in patients with Paget's disease.  相似文献   

3.
4.
Paget’s disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone resorption, with osteoclasts that are increased in size, multinuclearity, number and activity. PDB-causing missense and nonsense variants in the gene encoding Sequestosome-1/p62 (SQSTM1) have been identified, all of which cluster in and around the ubiquitin-associated (UBA) domain of the protein. SQSTM1 is ubiquitously expressed and there is, as yet, no clear reason why these mutations only appear to cause an osteoclast-related phenotype.Using co-immunoprecipitation and tandem mass spectrometry, we identified a novel interaction in human osteoclast-like cells between SQSTM1 and Autophagy-Linked FYVE domain-containing protein (ALFY/WDFY3). Endogenous ALFY and SQSTM1 both localised within the nuclei of osteoclasts and their mononuclear precursors. When osteoclasts were starved to induce autophagy, SQSTM1 and ALFY relocated to the cytoplasm where they formed large aggregates, with cytoplasmic relocalisation appearing more rapid in mature osteoclasts than in precursors in the same culture. Overexpression of wild-type SQSTM1 in HEK293 cells also resulted in the formation of cytoplasmic aggregates containing SQSTM1 and endogenous ALFY, as did overexpression of a PDB-causing missense mutant form of SQSTM1, indicating that this mutation does not impair the formation of SQSTM1- and ALFY-containing aggregates.Expression of ALFY in bone cells has not previously been reported, and the process of autophagy has not been studied with respect to osteoclast activity. We have identified a functional interaction between SQSTM1 and ALFY in osteoclasts under conditions of cell stress. The difference in response to starvation between mature osteoclasts and their precursors may begin to explain the cell-specific functional effects of SQSTM1 mutations in PDB.  相似文献   

5.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and prostaglandin E(2) (PGE(2)) are known to influence osteoclast formation indirectly through their effects on osteoblasts. To determine whether 1, 25(OH)(2)D(3) and PGE(2) also have a direct effect on circulating osteoclast precursors, these factors were added to long-term cultures of human peripheral blood mononuclear cells (PBMCs) in the presence of osteoprotegerin ligand and macrophage colony-stimulating factor (M-CSF) (+/-dexamethasone). The number of TRAP(+) and VNR(+) multinucleated cells and the area of lacunar resorption were decreased when 1,25(OH)(2)D(3) alone was added. A marked increase in resorption pit formation was noted when the combination of 1, 25(OH)(2)D(3) and dexamethasone was added to PBMC cultures. Dose-dependent inhibition of osteoclast formation and lacunar resorption was seen when PGE(2) was added to PBMC cultures in both the presence and the absence of dexamethasone. Thus, 1,25(OH)(2)D(3) and PGE(2) not only influence osteoclast formation in the presence of bone stromal cells but also act directly on circulating osteoclast precursors to influence osteoclast differentiation.  相似文献   

6.
Thyroid hormones enhance osteoclast formation and their excess is an important cause of secondary osteoporosis. 3,5,3' -Triiodo-L-thyronine (T3) induced the mRNA expression of receptor activator of nuclear factor-kappa B ligand (RANKL), which is a key molecule in osteoclast formation, in primary osteoblastic cells (POB). This effect was amplified in the copresence of 1 alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). Although T3 alone did not induce octeoclasts in coculture of bone marrow cells with POB, T3 enhanced 1,25(OH)(2)D(3)-induced osteoclast formation. Thyroxine (T4) also enhanced 1,25(OH)(2)D(3)-induced osteoclast formation. These data suggested that T4 was locally metabolized to T3 for its action, since T4 is a prohormone with little hormonal activity. The mRNA expression of type-2 iodothyronine deiodinase (D2), which is responsible for maintaining local T3 concentration, was induced by 1,25(OH)(2)D(3) dose- and time-dependently. Our data would facilitate our understanding of the mechanism of osteoclast formation by thyroid hormones and suggest a novel interaction between thyroid hormones and 1,25(OH)(2)D(3).  相似文献   

7.
1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] induces osteoclast formation via induction of receptor activator of NF-κB ligand (RANKL, also called TNF-related activation-induced cytokine: TRANCE) in osteoblasts. In cocultures of mouse bone marrow cells and osteoblasts, 1,25(OH)2D3 induced osteoclast formation in a dose-dependent manner, with maximum osteoclast formation observed at concentrations greater than 10?9 M of 1,25(OH)2D3. In the presence of bone morphogenetic protein 2 (BMP-2), the maximum formation of osteoclasts was seen with lower concentrations of 1,25(OH)2D3 (greater than 10?11 M), suggesting that BMP-2 enhances osteoclast formation induced by 1,25(OH)2D3. In addition, the expressions of RANKL mRNA and proteins were induced by 1,25(OH)2D3 in osteoblasts, and further upregulated by BMP-2. In mouse bone marrow cell cultures without 1,25(OH)2D3, BMP-2 did not enhance osteoclast differentiation induced by recombinant RANKL and macrophage colony-stimulating factor (M-CSF), indicating that BMP-2 does not target osteoclast precursors. Furthermore, BMP-2 up-regulated the expression level of vitamin D receptor (VDR) in osteoblasts. These results suggest that BMP-2 regulates mouse osteoclast differentiation via upregulation of RANKL in osteoblasts induced by 1,25(OH)2D3.  相似文献   

8.
Osteoclast-mediated bone resorption is increased in response to 1,25 dihydroxyvitamin D (1,25[OH]2D or calcitriol). Osteopetrosis is a metabolic bone disease characterized by defective, osteoclast-mediated bone resorption, which co-exists with elevated serum 1,25-(OH)2D levels in some osteopetrotic children and animals. We examined the effects of high doses of calcitriol on osteoclast number and cytochemistry in both normal and osteopetrotic (os) rabbits. Calcitriol was continuously infused at doses of 0.5, 2.5, or 25 micrograms/kg/day via subcutaneously implanted osmotic minipumps for a period of 7 days. Following treatment, the proximal tibial metaphyses were processed for histomorphometric and cytochemical analyses. Sections were stained for tartrate-resistant acid phosphatase (TrAP) or acid ATPase (TraATPase). Osteoclasts were significantly reduced in untreated os rabbits compared with age-matched normal littermates between birth and 3 weeks of age (41-46% of normal). Whereas most normal osteoclasts (85%) stained heavily for TrAP or TraATPase, less than half of os osteoclasts were heavily stained for these acid hydrolases. Infusions of 1,25(OH)2D resulted in elevations of osteoclast numbers in both normal and os rabbits, but the number of osteoclasts remained significantly lower in mutants than in normal littermates at any given dose. Calcitriol infusions also resulted in a significant increase in the percentage of os osteoclasts staining heavily for TrAP and TraATPase. These results suggest that in response to 1,25(OH)2D normal osteoclasts increase their production of acid hydrolases before increasing cell numbers and that, in spite of high levels of endogenous calcitriol, os rabbits can respond to exogenous 1,25(OH)2D as evidenced by increased osteoclast number and cytochemical staining, even though these osteoclasts fail to resorb the excess skeletal matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the biologically active form of vitamin D3, has been shown to inhibit proliferation and promote monocytic differentiation of leukemic cell lines. In the present communication, we extend these observations to normal bone marrow macrophage precursors, and 1) identify the stage of monocytic maturation wherein the steroid exerts its antiproliferative effect, and 2) demonstrate that 1,25-(OH)2D3 promotes bone marrow macrophage differentiation as manifest by specific up-regulation of the lineage-specific membrane protein, the mannose-fucose receptor. In these experiments, the 1,25-(OH)2D3-mediated inhibitory effect on colony formation was shown to be independent of attendant levels of colony stimulating factor-1 and targeted through the adherent bone marrow macrophage precursor. Examination of this steroid-sensitive adherent precursor population demonstrates that its specific binding of 125I-mannose bovine serum albumin spontaneously and progressively increases with time in culture. Whereas adherent bone marrow macrophages cultured for 2 days express 3 X 10(4) mannose receptors/cell, the number of binding sites increases to 7 X 10(4)/cell by day 4. When bone marrow macrophage precursors are exposed to 1,25-(OH)2D3, an additional stepwise enhancement of 125I-mannose bovine serum albumin obtains with time. Four days of culture with the steroid results in 1.6 X 10(5) mannose receptors/cell, a 100% increase as compared to control cells. Neither duration of culture nor exposure to 1,25-(OH)2D3 alters the KD of 125I-mannose bovine serum albumin which approximates 3-5 X 10(-9) ml-1. Finally, the "specificity" of vitamin D-mediated up-regulation of the mannose receptor was established by demonstrating that the steroid does not alter binding of 125I-alpha-thrombin by bone marrow-derived macrophage precursors.  相似文献   

10.
The primary and specific function of the osteoclast is the resorption of bone. We have applied this criterion, and a monoclonal antibody that binds specifically to osteoclasts, to cultures of tissues that may contain osteoclastic precursors. Bone marrow and spleen cells were incubated for up to 4 weeks in the presence or absence of parathyroid hormone, interleukin 1, or 1,25(OH)2 vitamin D3, on plastic coverslips or slices of devitalised bone. Osteoclasts (as judged by the presence of resorption cavities and the appearance of monoclonal antibody-positive cells) did not develop in cultures incubated without added hormones, nor in cultures containing parathyroid hormone or interleukin 1, but were regularly observed when bone marrow cells were incubated with 1,25(OH)2 vitamin D3. Although multinucleate giant cells were common after incubation, especially in the presence 1,25(OH)2 vitamin D3, monoclonal antibody bound not to these cells but to a minor and distinctive population of mononuclear cells and cells of low multinuclearity. We found no excavations and no monoclonal antibody-positive cells after incubation of peritoneal macrophages with 1,25(OH)2D3. These results provide direct evidence of osteoclastic function arising in cultures of haemopoietic tissues.  相似文献   

11.
Paget disease of bone (PDB) is a common disorder characterized by focal and disorganized increases of bone turnover. Genetic factors are important in the pathogenesis of PDB. We and others recently mapped the third locus associated with the disorder, PDB3, at 5q35-qter. In the present study, by use of 24 French Canadian families and 112 unrelated subjects with PDB, the PDB3 locus was confined to approximately 300 kb. Within this interval, two disease-related haplotype signatures were observed in 11 families and 18 unrelated patients. This region encoded the ubiquitin-binding protein sequestosome 1 (SQSTM1/p62), which is a candidate gene for PDB because of its association with the NF-kappaB pathway. Screening SQSTM1/p62 for mutations led to the identification of a recurrent nonconservative change (P392L) flanking the ubiquitin-associated domain (UBA) (position 394-440) of the protein that was not present in 291 control individuals. Our data demonstrate that two independent mutational events at the same position in SQSTM1/p62 caused PDB in a high proportion of French Canadian patients.  相似文献   

12.
Weanling rats on a normal diet mobilized bone calcium in response to 11 daily injections of 125 ng of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)/100 g, body weight. This effect was most evident in the tibial midshaft, where calcium levels were reduced by 38% compared to untreated controls. Calcium levels were reduced by only 13% in the proximal tibial metaphysis, a region formed by longitudinal growth during the 11-day experiment. The concurrent daily administration of the vitamin K antagonist warfarin dramatically increased calcium mobilization from the tibial metaphysis of 1,25-(OH)2D3-treated rats. Compared to rats which received 1,25-(OH)2D3 alone, the calcium content of the tibial metaphysis in rats treated with 1,25-(OH)2D3 plus warfarin was reduced by 40.4% (p less than 0.001) and the total dry weight was reduced by 35.0% (p less than 0.001). There was no effect of warfarin on bone calcium content or dry weight in the absence of 1,25-(OH)2D3 treatment. These observations indicate that a component of the steroidal hormone action of 1,25-(OH)2D3 on bone may be mediated by increased synthesis of a vitamin K-dependent protein. The action of this vitamin K-dependent protein would oppose net calcium loss in the tibial metaphysis of 1,25-(OH)2D3-treated rats. This vitamin K-dependent protein may be the bone Gla protein, the only bone specific protein whose synthesis is known to be increased by 1,25-(OH)2D3.  相似文献   

13.
Formation of osteoclast-like cells in mouse bone marrow cultures induced by either 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)), parathyroid hormone (PTH) or prostaglandin E(2) (PGE(2)), respectively, shows partial dependence on interleukin-6 receptor (IL-6R) activation. This suggests that locally produced IL-6 could be relevant for osteoclast formation. Therefore, we evaluated the effects of 1,25-(OH)(2)D(3), PTH, and PGE(2) on IL-6 production in stromal/osteoblastic cell lines. It appeared that these bone resorptive factors differed widely in their ability to modulate IL-6 mRNA expression and, consequently, protein synthesis in each of the cell lines studied. While 1,25-(OH)(2)D(3) was marginally effective only in ST2 cells, and PTH caused a 2- to 20-fold increase in IL-6 levels MC3T3-E1 and UMR-106 cells, PGE(2) enhanced IL-6 production in the ST2 and MC3T3-E1 cell line by two to three orders of magnitude, respectively, and also induced IL-6 in fibroblastic L929 cells. PGE(2)-stimulated IL-6 release from mesenchymal cells seems to be important for autocrine/paracrine control of osteoclast formation in health and disease.  相似文献   

14.
Osteoprotegerin (OPG) and its ligand (OPGL) negatively and positively regulate osteoclastogenesis in the mouse. OPG inhibits osteoclastogenesis by sequestering its ligand, OPGL, the osteoclast differentiation and activation factor. This study demonstrates the effects of soluble muOPGL and huOPG on the developing human osteoclast phenotype, on bone slices, using peripheral blood mononuclear cells (PBMCs), cultured for 2 weeks, without stromal cells. OPGL (2-50 ng/ml), in combination with CSF-1, hydrocortisone (HC), and 1,25(OH)2D3, increases the size of osteoclast-like cells on bone, as defined by the acquisition of osteoclast markers: vitronectin receptor (VR), tartrate-resistant acid phosphatase (TRAP), multinuclearity, and bone resorption. By 14 days, with 20 ng/ml OPGL, the largest cells/10x field have achieved an average diameter of 163+/-38 microm, but only approximately 10-20 microm in its absence and the number of osteoclast-like cells/mm2 bone surface is about 128. By scanning electron microscopy, OPGL-treated (20-ng/ml) cultures contain small osteoclast-like cells on bone with ruffled "apical" surfaces by day 7; by day 15, large osteoclast-like cells are spread over resorption lacunae. At 15 ng/ml OPGL, about 37% of the bone slice area is covered by resorption lacunae. OPG (5-250 ng/ml) antagonizes the effects of OPGL on the morphology of the osteoclast-like cells that form, as well as bone erosion. For cells grown on plastic, Cathepsin K mRNA levels, which are barely detectable at plating, are elevated 7-fold, by 5 days, in the presence, not the absence, of OPGL (20 ng/ml) + CSF-1 (25 ng/ml). Similar findings are observed in experiments performed in the absence of HC and 1,25(OH)2D3, indicating that HC and 1,25(OH)2D3 are not needed for OPGL-induced osteoclast differentiation. In conclusion, this study confirms a pivotal role for OPGL and OPG in the modulation of human osteoclast differentiation and function, suggesting a use for OPG for treating osteoclast-mediated bone disease in humans.  相似文献   

15.
Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)(2)D(3), the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)(2)D(3) is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)(2)D(3) treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 μg/kg 1,25(OH)(2)D(3) for one week, or intermittent 3 μg/kg 1,25(OH)(2)D(3) for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)(2)D(3)-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)(2)D(3) increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)(2)D(3) lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)(2)D(3)-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)(2)D(3) on intracortical bone formation. This study shows negative effects of 1,25(OH)(2)D(3) on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients.  相似文献   

16.
17.
Statins stimulate bone formation partly by inducing osteoblast differentiation, although there is controversy about the effects of statins on bone mineral density and fracture risk. Several studies have revealed that statins suppress bone resorption. However, the mechanism by which statins inhibit bone resorption is still unclear. The present study was performed to clarify the effects of statins on osteoclast formation as well as the levels of osteoprotegerin (OPG) and receptor activator of NFkappaB ligand (RANKL) mRNA in mouse bone-cell cultures by semiquantitative RT-PCR. 10(-8) M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] significantly stimulated osteoclast formation and 10(-6) M statins (mevastatin and simvastatin) significantly antagonized osteoclast formation stimulated by 1,25(OH)2D3 in mouse bone-cell cultures, including both osteoblasts and osteoclasts. 10(-6) M mevastatin and simvastatin increased the level of OPG mRNA in mouse bone-cell cultures. On the other hand, 10(-6) M mevastatin and simvastatin inhibited the level of RANKL mRNA in these cultures. In conclusion, the present study demonstrates that statins inhibit osteoclast formation in mouse bone-cell cultures. Moreover, statins also increased and decreased the levels of OPG and RANKL mRNA expression in these cultures, respectively. The modulation of OPG/RANKL may be involved in the inhibition of osteoclast formation by statins.  相似文献   

18.
Garner TP  Long J  Layfield R  Searle MS 《Biochemistry》2011,50(21):4665-4674
The scaffold protein p62/SQSTM1 acts as a hub in regulating a diverse range of signaling pathways which are dependent upon a functional ubiquitin-binding C-terminal UBA domain. Mutations linked to Paget's disease of bone (PDB) commonly cluster within the UBA domain. The p62 UBA domain is unique in forming a highly stable dimer which regulates ubiquitin recognition by using overlapping surface patches in both dimerization and ubiquitin binding, making the two association events competitive. NMR structural analysis and biophysical methods show that some PDB mutations modulated the ubiquitin binding affinity by both direct and indirect mechanisms that affect UBA structural integrity, dimer stability, and contacts at the UBA-ubiquitin interface. In other cases, common PDB mutations (P392L in particular) result in no significant change in ubiquitin binding affinity for the UBA domain in isolation; however, all PDB UBA mutations lead to loss of function with respect to ubiquitin binding in the context of full-length p62, suggesting a more complex underlying mechanism.  相似文献   

19.
BackgroundUranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts.MethodsThe effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses.ResultsWe observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis.ConclusionsWe show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis.General significanceWe describe cellular and molecular effects of uranium that potentially affect bone homeostasis.  相似文献   

20.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号