首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin 1 (IL-1), produced by both synovial cells and chondrocytes, plays a pivotal role in the pathogenesis of cartilage destruction in osteoarthritis (OA). We examined the specific expression and function of IL-1 receptor family-related genes in human joint tissues. Gene array analysis of human normal and OA-affected cartilage showed mRNA expression of IL-1 receptor accessory protein (IL-1RAcp) and IL-1 type I receptor (IL-1RI), but not IL-1 antagonist (IL-1ra) and IL-1 type II decoy receptor (IL-1RII). Similarly, human synovial and epithelial cells showed an absence of IL-1RII mRNA. Functional genomic analyses showed that soluble (s) IL-1RII, at picomolar concentrations, but not soluble TNF receptor:Fc, significantly inhibited IL-1beta-induced nitric oxide (NO) and/or prostaglandin E(2) production in chondrocytes, synovial and epithelial cells. In OA-affected cartilage, the IC(50) for inhibition of NO production by sIL-1RII was 2 log orders lower than that for sIL-1RI. Human chondrocytes that overexpressed IL-1RII were resistant to IL-1-induced IL-1beta mRNA accumulation and inhibition of proteoglycan synthesis. In osteoarthritis, deficient expression by chondrocytes of innate regulators or antagonists of IL-1 such as IL-1ra and IL-1RII (soluble or membrane form) may allow the catabolic effects of IL-1 to proceed unopposed. The sensitivity of IL-1 action to inhibition by sIL-1RII has therapeutic implications that could be directed toward correcting this unfavorable tissue(s) dependent imbalance.  相似文献   

3.
Brain astrocytes play a pivotal role in the brain response to inflammation. They express IL-1 receptors including the type I IL-1 receptor (IL-1RI) that transduces IL-1 signals in cooperation with the IL-1 receptor accessory protein (IL-1RAcP) and the type II IL-1 receptor (IL-1RII) that functions as a decoy receptor. As glucocorticoid receptors are expressed on astrocytes, we hypothesized that glucocorticoids regulate IL-1 receptors expression. IL-1beta-activated mouse primary astrocytes were treated with 10(-6) M dexamethasone, and IL-1 receptors were studied at the mRNA and protein levels. Using RT-PCR, IL-1RI and IL-1RII but not IL-1RAcP mRNAs were found to be up-regulated by dexamethasone in a time-dependent manner. Dexamethasone (Dex), but not progesterone, had no effect on IL-1RI but strongly increased IL-1RII mRNA expression. Binding studies revealed an increase in the number of IL-1RII binding sites under the effect of Dex, but no change in affinity. These findings support the concept that glucocorticoids have important regulatory effect on the response of astrocytes to IL-1.  相似文献   

4.
IL-1 elicits its cellular effects by binding a heterodimeric receptor consisting of IL-1RI and the accessory protein, IL-1RAcPr. In addition, it binds to IL-1RII, which lacking signaling function has been ascribed a decoy role. The fate of the ligand following interaction with the decoy receptor was examined in human polymorphonuclear cells (PMN), which express predominantly (>90%) IL-1RII. Incubation of PMN with IL-1beta results in a rapid decrease in cell surface-associated ligand accompanied by a concomitant increase in internalized IL-1 with 50-60% of IL-1beta located intracellularly within 1 h at 37 degrees C. The use of blocking Abs revealed that IL-1 internalization is mediated exclusively by the decoy receptor. The results of inhibitor analysis demonstrate that internalization requires ATP synthesis and involves clathrin-mediated endocytosis. Following removal of the ligand, the receptor was rapidly re-expressed on the cell surface. Cyclohexamide, a protein synthesis inhibitor, had no effect upon the process, suggesting that the re-expressed receptor was recycled. In addition, human keratinocytes stably transfected with IL-1RII (HaCAT 811) also internalized the IL-1RII with 43% cell surface receptor internalized after 90 min. Immunofluorescence microscopy revealed colocalization of the internalized receptor with wheat germ agglutinin-labeled internalized glycoproteins and early endosome Ag-1, a protein associated with the early endosome compartments, indicative of cellular uptake of IL-1RII by endocytosis. In contrast, little or no internalization was observed in other cells of immune origin. These results suggest that the decoy receptor IL-1RII can act as a scavenger of IL-1, representing a novel autoregulatory mechanism of the IL-1 system.  相似文献   

5.
When activated by its ligand, the interleukin receptor type I (IL-1RI) transduces signals in cooperation with the IL-1 receptor accessory protein (IL-1RacP). In contrast, IL-1RII functions as a decoy receptor without participating in IL-1 signalling. Brain astrocytes are cellular targets of IL-1 and play a pivotal role in brain responses to inflammation. The regulation of IL-1 receptors on astrocytes by anti-inflammatory cytokines such as IL-4 and IL-10 has not been studied, despite its importance for understanding the way these cells respond to IL-1. Using RT-PCR, we first showed that the expression of IL-1RI and IL-1RII, but not IL-1RacP, mRNAs are up-regulated by IL-1 beta in a time-dependent manner. Using a radioligand binding technique, we then showed that astrocytes display an equivalent number of IL-1RI and IL-1RII. IL-1 beta decreases the number of IL-1RI binding sites, whereas it increases those of IL-1RII. IL-4 and IL-10 both up-regulate IL-1RII IL-1 beta-induced, but only IL-4 does so for IL-1RI. At the protein level, IL-4 and IL-10 dramatically reverse the ability of IL-1 beta to inhibit expression of IL-1RI but neither affects the ability of IL-1 beta to enhance the number of IL-1RII. Collectively, these results establish the existence of receptor cross-talk between pro- and anti-inflammatory cytokines on a critical type of cell that regulates inflammatory events in the brain.  相似文献   

6.
The type II IL-1 receptor (IL-1RII) is a non-signalling molecule which acts as a decoy target for IL-1. Various signals (e.g. chemoattractants and phorbol ester) induce metalloprotease-mediated rapid shedding of the IL-1RII. The present study was designed to compare the susceptibility to shedding of the decoy IL-1RII vs the signalling IL-1RI. HEK 293 cells and COS cells were transfected with cDNAs encoding the human IL-1RI, IL-1RII or both. Slow spontaneous release and rapid phorbol ester-induced shedding were only observed for the decoy IL-1RII. Similarly, OVCAR-3 cells, which express substantial amounts of both IL-1RI and IL-1RII, only released the IL-1RII. These results indicate that the IL-RII, but not the IL-1RI, is susceptible to proteolytic shedding, a finding consistent with the decoy function of this molecule.  相似文献   

7.
Proteolytic cleavage of the extracellular domain of the type II IL-1 decoy receptor (IL-1RII) generates soluble IL-1-binding proteins that prevent excessive bioactivity by binding free IL-1. In this study we report that an aminopeptidase, aminopeptidase regulator of TNFR1 shedding (ARTS-1), is required for IL-1RII shedding. Coimmunoprecipitation experiments demonstrate an association between endogenous membrane-associated ARTS-1 and a 47-kDa IL-1RII, consistent with ectodomain cleavage of the membrane-bound receptor. A direct correlation exists between ARTS-1 protein expression and IL-1RII shedding, as cell lines overexpressing ARTS-1 have increased IL-1RII shedding and decreased membrane-associated IL-1RII. Basal IL-1RII shedding is absent from ARTS-1 knockout cell lines, demonstrating that ARTS-1 is required for constitutive IL-1RII shedding. Similarly, PMA-mediated IL-1RII shedding is almost entirely ARTS-1-dependent. ARTS-1 expression also enhances ionomycin-induced IL-1RII shedding. ARTS-1 did not alter levels of membrane-associated IL-1RI or IL-1R antagonist release from ARTS-1 cell lines, which suggests that the ability of ARTS-1 to promote shedding of IL-1R family members may be specific for IL-1RII. Further, increased IL-1RII shedding by ARTS-1-overexpressing cells attenuates the biological activity of IL-1beta. We conclude that the ability of ARTS-1 to enhance IL-1RII shedding represents a new mechanism by which IL-1-induced cellular events can be modulated. As ARTS-1 also promotes the shedding of the structurally unrelated 55-kDa, type I TNF receptor and the IL-6R, we propose that ARTS-1 may play an important role in regulating innate immune and inflammatory responses by increasing cytokine receptor shedding.  相似文献   

8.
Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT-PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1beta, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1beta induced the release of PGE2, IL-6 and activated NF-kappaB, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1beta also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1beta in the medium of LPS-treated microglia and exacerbated the IL-1beta-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1beta actions by binding excess levels of this cytokine during brain inflammation.  相似文献   

9.
IL-6 is a multifunctional cytokine which is produced by a variety of cells. Therefore it was examined whether anti-CD3-induced T cell activation was associated with the induction of functionally relevant IL-6 in human monocyte accessory cells. Significantly increased amounts of IL-6 were detected in supernatants of anti-CD3-treated PBMC. Stimulation of FACS-sorted greater than 98% pure monocyte accessory cells, but not of highly purified T cells with anti-CD3, resulted in an increased IL-6 production. Furthermore, anti-CD3 significantly enhanced IL-6 mRNA expression in monocyte accessory cells. IL-6 production was not limited to anti-CD3, inasmuch as equivalent IL-6 stimulation could be achieved with a mouse IgG2a isotype control antibody. In contrast to solid phase-bound mouse IgG2a, the soluble form of this antibody failed to induce IL-6 secretion indicating a requirement for Fc gamma RI receptor cross-linking. Moreover, this property may be specific for the Fc gamma RI receptor inasmuch as mouse IgG1 antibodies binding to the Fc gamma RII receptor did not significantly enhance IL-6 production. The role of IL-6 being an additional signal in T cell activation was confirmed by the finding that an anti-IL-6 antiserum was able to suppress anti-CD3-induced T cell activation. These data indicate that binding of anti-CD3 to Fc gamma RI may generate an activation signal towards the monocyte accessory cell leading to the production and secretion of monocyte IL-6, which in turn augments T cell activation, and also may be relevant to a variety of antibody-mediated immune responses against viral and bacterial infections.  相似文献   

10.
A cDNA clone encoding the receptor for guinea pig immunoglobulin G was isolated from a guinea pig peritoneal macrophage cDNA library. The cloned cDNA encoded 271 amino acids containing an N-terminal signal sequence. The deduced amino acid sequence is most homologous to murine Fc gamma RII beta 2. The receptor protein could be expressed in COS-7 and L cells transfected with the cDNA, suggesting that the expression of this receptor does not require the co-expression of a second chain such as gamma chain of Fc epsilon RI or CD3 zeta chain. The transformant L cells showed the binding to both the guinea pig IgG1 and IgG2 antibodies complexed with antigen, indicating that the cDNA we cloned was the one for guinea pig Fc gamma 1/gamma 2R.  相似文献   

11.
We have isolated cDNA clones encoding a mouse low affinity receptor for IgE (Fc epsilon RII) from a cDNA library of BALB/c splenic B cells activated with LPS and IL-4. The 2.2-kb cDNA clone encodes a 331 amino acid membrane glycoprotein that is homologous to human Fc epsilon RII (CD23) and a family of carbohydrate-binding proteins. COS7 cells transfected with the cDNA clones expressed a 45,000 m.w. protein that bound IgE and the anti-Fc epsilon RII mAb, B3B4. Fc epsilon RII mRNA was up-regulated in mouse B cells by culture with IL-4, but not in B cells cultured with IgE. Fc epsilon RII mRNA was detected in IgM+/IgD+ B cell lines, but not in pre-B cell lines or in B cell lines which have undergone differentiation to secrete Ig. The monocyte line P388D1, mast cell lines MC/9 and PT18, and peritoneal macrophages stimulated with IL-4 lacked detectable Fc epsilon RII mRNA, as did Thy-1.2+, CD4+, and CD8+ normal T cells and Thy-1.2+ T cells from Nippostrongylus brasiliensis-infected mice.  相似文献   

12.
A monomeric form of human interleukin 10 (IL-10M1) has been engineered for detailed structure-function studies on IL-10 and its receptor complexes. Wild type IL-10 (wtIL-10) is a domain swapped dimer whose structural integrity depends on the intertwining of two peptide chains. wtIL-10 was converted to a monomeric isomer by inserting 6 amino acids into the loop connecting the swapped secondary structural elements. Characterization of IL-10M1 by mass spectroscopy, size exclusion chromatography, cross-linking, and circular dichroism shows that IL-10M1 is a stable alpha-helical monomer at physiological pH whose three-dimensional structure closely resembles one domain of wtIL-10. As previously reported, incubation of wtIL-10 with a soluble form of the IL-10Ralpha (sIL-10Ralpha) generates a complex that consists of 2 wtIL-10 molecules and 4 sIL-10Ralphas. In contrast, IL-10M1 forms a 1:1 complex with the sIL-10Ralpha. Characterization of the interaction using isothermal titration calorimetry confirmed the 1:1 stoichiometry and yielded a dissociation constant of 30 nm with an apparent binding enthalpy of -12.2 kcal/mol. Despite forming a 1:1 complex, IL-10M1 is biologically active in cellular proliferation assays. These results indicate that the 1:1 interaction between IL-10M1 and IL-10Ralpha is sufficient for recruiting the signal transducing receptor chain (IL-10Rbeta) into the signaling complex and eliciting IL-10 cellular responses.  相似文献   

13.
Affinity purified RI and RII antibodies of regulatory subunits (R) of type I (RI) and type II (RII) cAMP-dependent protein kinase were utilized to determine the immunological characterization and specific compartmentalization of R in estrogen receptor negative MDA-MB-231 human breast cancer cells. The 8-azido-(32P)-cAMP binding analysis of MDA-MB-231 cell extracts exhibited 47,000- and 50,000-dalton cAMP receptor proteins. RI and RII antibodies, by immunoprecipitation, detected the 47,000- and 50,000-dalton proteins, respectively. The 47,000-dalton protein was identified as RI as it showed a similar molecular weight as of bovine RI on SDS-polyacrylamide gel electrophoresis. Although 50,000-dalton protein did not co-migrate with bovine heart 54,000-dalton RII, it was identified as RII of MDA-MB-231 cells since it was specifically precipitated with RII antibody but not with RI antibody. An indirect immunofluorescence revealed that during different phases of growth of MDA-MB-231 cells, 50,000-dalton RII was specifically compartmentalized in the mitotic spindle and nucleoli of the cells whereas RI did not exhibit a specific compartmentalization in the cells, but was distributed throughout the cell components. These results suggest specific role(s) of 50,000-dalton RII at the nuclei of MDA-MB-231 cells.  相似文献   

14.
15.
IL-1 is a major proinflammatory cytokine which interacts with the IL-1 receptor I (IL-1RI) complex, composed of IL-1RI and IL-1R accessory protein subunits. Currently available strategies to counter pathological IL-1 signaling rely on a recombinant IL-1 receptor antagonist, which directly competes with IL-1 for its binding site. Presently, there are no small antagonists of the IL-1RI complex. Given this void, we derived 15 peptides from loops of IL-1R accessory protein, which are putative interactive sites with the IL-1RI subunit. In this study, we substantiate the merits of one of these peptides, rytvela (we termed "101.10"), as an inhibitor of IL-1R and describe its properties consistent with those of an allosteric negative modulator. 101.10 (IC(50) approximately 1 nM) blocked human thymocyte proliferation in vitro, and demonstrated robust in vivo effects in models of hyperthermia and inflammatory bowel disease as well as topically in contact dermatitis, superior to corticosteroids and IL-1ra; 101.10 did not bind to IL-1RI deficient cells and was ineffective in vivo in IL-1RI knockout mice. Importantly, characterization of 101.10, revealed noncompetitive antagonist actions and functional selectivity by blocking certain IL-1R pathways while not affecting others. Findings describe the discovery of a potent and specific small (peptide) antagonist of IL-1RI, with properties in line with an allosteric negative modulator.  相似文献   

16.
IL-6 is a major regulator of acute phase protein synthesis in the liver. It exerts its action via a plasma membrane receptor consisting of two subunits, a ligand binding 80-kDa glycoprotein and a 130-kDa glycoprotein involved in signal transduction. We genetically generated a soluble form of the 80-kDa subunit of the human IL-6R (shIL-6R) in mouse fibroblasts (NIH/3T3 cells). The shIL-6R added to human hepatoma cells (HepG2) amplified the induction of alpha 1-antichymotrypsin and haptoglobin by IL-6 at the mRNA and protein level. Moreover, a model for a liver permanently exposed to high IL-6 concentrations has been developed; HepG2 cells were stably transfected with human IL-6-cDNA; 10(6) of the transfected cells (HepG2-IL-6) synthesized and secreted 2 micrograms of IL-6 within 24 h. Incubation of these cells with endogenous or exogenous IL-6 did not result in acute-phase protein induction. However, these IL-6-desensitized cells responded to other cytokines such as leukemia inhibitory factor, transforming growth factor beta 1, and IFN-gamma, known to modulate acute phase protein synthesis in the liver. Incubation of HepG2-IL-6 cells with shIL-6R reconstituted their responsiveness to IL-6 in a dose- and time-dependent manner. The possible biologic role that might be played by the shIL-6R in disease is discussed.  相似文献   

17.
We created a novel mutated form of human interleukin-13 (IL-13) in which a positively charged arginine (R) at position 112 was substituted to a negatively charged aspartic acid (D). This mutant, termed IL-13R112D, was expressed in Escherichia coli and purified to near homogeneity. IL-13R112D was found to be a potent IL-13 agonist with 5-10-fold improved binding affinity to IL-13 receptors compared with wild-type IL-13 (wtIL-13). The conclusion of IL-13 agonist activity was drawn on the basis of approximately 10-fold improved activity over wtIL-13 in several assays: (a) inhibition of CD14 expression in primary monocytes; (b) proliferation of TF-1 and B9 cell lines; and (c) activation of STAT6 in Epstein-Barr virus-immortalized B cells, primary monocytes, and THP-1 monocytic cell line. Furthermore, mutant IL-13R112D neutralized the cytotoxic activity of a chimeric fusion protein composed of wtIL-13 and a Pseudomonas exotoxin A (IL-13-PE38) approximately 10 times better than wtIL-13. Based on these results, it was concluded that IL-13R112D interacts with much stronger affinity than wtIL-13 on all cell types tested and that Arg-112 plays an important role in the interaction with its receptors (IL-13R). Thus, these results suggest that IL-13R112D may be a useful ligand for the study of IL-13 interaction with its receptors or, alternatively, in designing specific targeted agents for IL-13R-positive malignancies.  相似文献   

18.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

19.
The biological effects of interleukin (IL)-1 are realized through binding to specific membrane-bound receptors. The efficiency of IL-1 action depends on the number of receptors on the cell. We determined the percentage of cells that express IL-1 receptor type I (IL-1RI) and IL-1 receptor type II (IL-1RII) by flow cytometry using phycoerythrin (PE)-labelled antibodies to the IL-1Rs, and the mean absolute number of membrane-bound IL-1Rs per cell using QuantiBRITE PE calibration beads. We showed that different subpopulations of immunocompetent cells expressed different numbers of molecules of membrane-bound IL-1RI and IL-1RII. We also established that when cells were stimulated with bacterial lipopolysaccharide, there was a significant increase in the number of IL-1RI expressed, and a significant decrease in the mean number of IL-1RII molecules per cell. Determination of the mean number of membrane-bound IL-1R molecules using this protocol enables us to obtain precise and reproducible data that are necessary for full evaluation of expression levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号