首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the “death” adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493–2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd−/−, as compared with cradd+/+, primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists.  相似文献   

2.
T-cell receptor (TCR)-induced T-cell activation is a critical event in adaptive immune responses. The engagement of TCR complex by antigen along with the activation of the costimulatory receptors trigger a cascade of intracellular signaling, in which caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) is a crucial scaffold protein. Upon stimulation, CARMA1 recruits downstream molecules including B-cell CLL/lymphoma 10 (Bcl10), mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1), and TRAF6 to assemble a specific TCR-induced signalosome that triggers NF-κB and JNK activation. In this report, we identified protein kinase Cδ (PKCδ) as a CARMA1-associated protein by a biochemical affinity purification approach. PKCδ interacted with CARMA1 in TCR stimulation-dependent manner in Jurkat T cells. Overexpression of PKCδ inhibited CARMA1-mediated NF-κB activation, whereas knockdown of PKCδ potentiated TCR-triggered NF-κB activation and IL-2 secretion in Jurkat T cells. Reconstitution experiments with PKCδ kinase-dead mutant indicated that the kinase activity of PKCδ was dispensable for its ability to inhibit TCR-triggered NF-κB activation. Furthermore, we found that PKCδ inhibited the interaction between MALT1 and TRAF6, but not the association of CARMA1 with PKCθ, Bcl10, or MALT1. These observations suggest that PKCδ is a negative regulator in T cell activation through inhibiting the assembly of CARMA1 signalosome.  相似文献   

3.
Triggering of lymphocyte antigen receptors is the critical first step in the adaptive immune response against pathogens. T cell receptor (TCR) ligation assembles a large membrane signalosome, culminating in NF-kappaB activation [1,2]. Recently, caspase-8 was found to play a surprisingly prominent role in lymphocyte activation in addition to its well-known role in apoptosis [3]. Caspase-8 is activated after TCR stimulation and nucleates a complex with B cell lymphoma 10 (BCL10), paracaspase MALT1, and the inhibitors of kappaB kinase (IKK) complex [4]. We now report that the ubiquitin ligase TRAF6 binds to active caspase-8 upon TCR stimulation and facilitates its movement into lipid rafts. We identified in silico two putative TRAF6 binding motifs in the caspase-8 sequence and found that mutation of critical residues within these sites abolished TRAF6 binding and diminished TCR-induced NF-kappaB activation. Moreover, RNAi-mediated silencing of TRAF6 abrogated caspase-8 recruitment to the lipid rafts. Protein kinase Ctheta (PKCtheta), CARMA1, and BCL10 are also required for TCR-induced caspase-8 relocation, but only PKCtheta and BCL10 control caspase-8 activation. Our results suggest that PKCtheta independently controls CARMA1 phosphorylation and BCL10-dependent caspase-8 activation and unveil an essential role for TRAF6 as a critical adaptor linking these two convergent signaling events.  相似文献   

4.
5.
6.
Newton K  Dixit VM 《Current biology : CB》2003,13(14):1247-1251
CARMA1 (originally called CARD11) is a membrane-associated guanylate kinase family member that is required for T cell receptor (TCR)-induced NF-kappa B activation in T cell leukemia lines. It uses its N-terminal caspase activation and recruitment domain (CARD) to interact with the CARD in the downstream adaptor Bcl-10. We show that primary B and T lymphocytes from knock-in mice expressing only a CARDless form of CARMA1 (Delta CARD) are defective at mitogen-induced NF-kappa B activation and fail to proliferate. CARMA1 mutant mice exhibited normal T but impaired B cell development; CD5(+) peritoneal B cells were absent, and serum immunoglobulin levels were markedly reduced. A lacZ reporter gene knocked into the CARMA1 locus confirmed lymphocyte-specific expression of CARMA1. Thus, CARMA1 has an essential role in mediating B and T lymphocyte proliferation and requires its CARD to engage downstream signaling components.  相似文献   

7.
The CARMA1, Bcl10, and MALT1 proteins together constitute a signaling complex (CBM signalosome) that mediates antigen-dependent activation of NF-κB in lymphocytes, thereby representing a cornerstone of the adaptive immune response. Although CARMA1 is restricted to cells of the immune system, the analogous CARMA3 protein has a much wider expression pattern. Emerging evidence suggests that CARMA3 can substitute for CARMA1 in non-immune cells to assemble a CARMA3-Bcl10-MALT1 signalosome and mediate G protein-coupled receptor activation of NF-κB. Here we show that one G protein-coupled receptor, the type 1 receptor for angiotensin II, utilizes this mechanism for activation of NF-κB in endothelial and vascular smooth muscle cells, thereby inducing pro-inflammatory signals within the vasculature, a key factor in atherogenesis. Further, we demonstrate that Bcl10-deficient mice are protected from developing angiotensin-dependent atherosclerosis and aortic aneurysms. By uncovering a novel vascular role for the CBM signalosome, these findings illustrate that CBM-dependent signaling has functions outside the realm of adaptive immunity and impacts pathobiology more broadly than previously known.  相似文献   

8.
CARMA1, BCL10 and MALT1 form a large molecular complex known as the CARMA1 signalosome during lymphocyte activation. Lymphocyte activation via the CARMA1 signalosome is critical to immune response and linked to many immune diseases. Despite the important role of the CARMA1 signalosome during lymphocyte activation and proliferation, limited structural information is available. Here, we report the dimeric structure of CARMA1 CARD at a resolution of 3.2 Å. Interestingly, although CARMA1 CARD has a canonical six helical-bundles structural fold similar to other CARDs, CARMA1 CARD shows the first homo-dimeric structure of CARD formed by a disulfide bond and reveals a possible biologically important homo-dimerization mechanism.  相似文献   

9.
Thrombin is a potent modulator of endothelial function and, through stimulation of NF-κB, induces endothelial expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These cell surface adhesion molecules recruit inflammatory cells to the vessel wall and thereby participate in the development of atherosclerosis, which is increasingly recognized as an inflammatory condition. The principal receptor for thrombin on endothelial cells is protease-activated receptor-1 (PAR-1), a member of the G protein-coupled receptor superfamily. Although it is known that PAR-1 signaling to NF-κB depends on initial PKC activation, the subsequent steps leading to stimulation of the canonical NF-κB machinery have remained unclear. Here, we demonstrate that a complex of proteins containing CARMA3, Bcl10, and MALT1 links PAR-1 activation to stimulation of the IκB kinase complex. IκB kinase in turn phosphorylates IκB, leading to its degradation and the release of active NF-κB. Further, we find that although this CARMA3·Bcl10·MALT1 signalosome shares features with a CARMA1-containing signalosome found in lymphocytes, there are significant differences in how the signalosomes communicate with their cognate receptors. Specifically, whereas the CARMA1-containing lymphocyte complex relies on 3-phosphoinositide-dependent protein kinase 1 for assembly and activation, the CARMA3-containing endothelial signalosome functions completely independent of 3-phosphoinositide-dependent protein kinase 1 and instead relies on β-arrestin 2 for assembly. Finally, we show that thrombin-dependent adhesion of monocytes to endothelial cells requires an intact endothelial CARMA3·Bcl10·MALT1 signalosome, underscoring the importance of the signalosome in mediating one of the most significant pro-atherogenic effects of thrombin.  相似文献   

10.
PKC, β-arrestin 2, CARMA3, BCL10, MALT1, TRAF6 and MEKK3 are signaling proteins that have a key role in G protein-coupled receptor (GPCR)-mediated activation of nuclear factor-κB (NF-κB) pathway in nonhematopoietic cells in response to lysophosphatidic acid (LPA) stimulation. The PKC, β-arrestin 2, CARMA3-BCL10-MALT1-TRAF6 signalosome, and MEKK3 functions as a link between GPCR signaling and IKK-NF-κB activation. Here we briefly summarize recent progress in the understanding of the molecular and biological functions of these proteins in GPCR-mediated NF-κB activation in nonhematopoietic cells.  相似文献   

11.
Antigen receptors activate pathways that control cell survival, proliferation, and differentiation. Two important targets of antigen receptors, NF-κB and Jun N-terminal kinase (JNK), are activated downstream of CARMA1, a scaffolding protein that nucleates a complex including BCL10, MALT1, and other IκB kinase (IKK)-signalosome components. Somatic mutations that constitutively activate CARMA1 occur frequently in diffuse large B cell lymphoma (DLBCL) and mediate essential survival signals. Mechanisms that downregulate this pathway might thus yield important therapeutic targets. Stimulation of antigen receptors induces not only BCL10 activation but also its degradation downstream of CARMA1, thereby ultimately limiting signals to its downstream targets. Here, using lymphocyte cell models, we identify a kinase-independent requirement for TAK1 and its adaptor, TAB1, in antigen receptor-induced BCL10 degradation. We show that TAK1 acts as an adaptor for E3 ubiquitin ligases that target BCL10 for degradation. Functionally, TAK1 overexpression restrains CARMA1-dependent activation of NF-κB by reducing BCL10 levels. TAK1 also promotes counterselection of NF-κB-addicted DLBCL lines by a dual mechanism involving kinase-independent degradation of BCL10 and kinase-dependent activation of JNK. Thus, by directly promoting BCL10 degradation, TAK1 counterbalances NF-κB and JNK signals essential for the activation and survival of lymphocytes and CARMA1-addicted lymphoma types.  相似文献   

12.
The adaptor protein FADD directly, or indirectly via another adaptor called TRADD, recruits caspase 8 to death receptors of the tumor necrosis factor receptor family. Consequentially, a dominant-negative mutant (FADD-DN, which consists only of the FADD death domain) that binds to receptors but cannot recruit caspase 8 has been widely used to inhibit apoptosis by various stimuli that work via death receptors. Here, we show that FADD-DN also has another cell type- and cancer-dependent activity because it induces apoptosis of normal human prostate epithelial cells but not normal prostate stromal cells or prostate cancer cells. This activity is independent of FADD-DN's ability to bind to three known interacting proteins, Fas, TRADD or RIP suggesting that it is distinct from FADD's functions at activated death receptors. FADD-DN induces caspase activation in normal epithelial cells as demonstrated using a Fluorescence Resonance Energy Transfer assay that measures caspase activity in individual living cells. However, caspase-independent pathways are also implicated in FADD-DN-induced apoptosis because caspase inhibitors were inefficient at preventing prostate cell death. Therefore, the death domain of FADD has a previously unrecognized role in cell survival that is epithelial-specific and defective in cancer cells. This FADD-dependent signaling pathway may be important in prostate carcinogenesis.  相似文献   

13.
14.
15.
The adaptor protein CARMA1 is required for antigen receptor-triggered activation of IKK and JNK in lymphocytes. Once activated, the events that subsequently turn off the CARMA1 signalosome are unknown. In this study, we found that antigen receptor-activated CARMA1 underwent lysine 48 (K48) polyubiquitination and proteasome-dependent degradation. The MAGUK region of CARMA1 was an essential player in this event; the SH3 and GUK domains contained the main ubiquitin acceptor sites, and deletion of a Hook domain (an important structure for maintaining inactive MAGUK proteins) between SH3 and GUK was sufficient to induce constitutive ubiquitination of CARMA1. A similar deletion promoted the ubiquitination of PSD-95 and Dlgh1, suggesting that a conserved mechanism may control the turnover of other MAGUK family protein complexes. Functionally, we demonstrated that elimination of MAGUK ubiquitination sites in CARMA1 resulted in elevated basal and inducible NF-κB and JNK activation as a result of defective K48 ubiquitination and increased persistence of this ubiquitination-deficient CARMA1 protein in activated lymphocytes. The coordination of degradation with the full activation of the CARMA1 molecule likely provides an intrinsic feedback control mechanism to balance lymphocyte activation upon antigenic stimulation.The CARD-containing MAGUK protein 1 (CARMA1, or CARD11) is regarded as an orchestrator of both T-cell-dependent and T-cell-independent immune responses due to its requirement in the activation of IKK and JNK signaling pathways downstream of antigen receptor (AR) ligation in B and T cells (3, 6, 8, 17). CARMA1 overexpression and/or mutations have also been associated with lymphomagenesis, as it promotes sustained activation of NF-κB-dependent cell survival (10, 16, 18). Structurally, CARMA1 is a multidomain adaptor protein containing a caspase recruitment (CARD) and a coiled-coil (CC) domain linked upstream of a region that is related to the MAGUK family of proteins. This MAGUK region contains a postsynaptic density 95/disc large/zona occludens 1 (PDZ), a SRC homology 3 (SH3), and a guanylate kinase-like (GUK) domain (2, 20). In addition, CARMA1 contains a flexible serine/threonine-rich linker that bridges the CC and MAGUK domains. Phosphorylation of this linker by protein kinase Cβ (PKCβ) or PKCθ controls the activation status of CARMA1 (13, 29, 30); thus, this region has been designated as the PKC-regulated domain (PRD) (22). It is likely that PRD phosphorylation destabilizes an inhibitory conformation in CARMA1 that exposes the various interaction domains required to assemble its downstream signaling components. Consistent with this model, deletion of the PRD results in a constitutively active CARMA1, resulting in high basal NF-κB activation (14, 30).Proximal downstream adaptors of CARMA1 include BCL10 and MALT1 (22). Genetic deletion of any of these proteins in cellular and animal models has revealed the importance of this pathway to immune cell function. While AR-induced activation of early signaling pathways, such as protein tyrosine phosphorylation, intracellular Ca2+ flux, and activation of extracellular signal-regulated kinase (ERK) and Akt are intact in CARMA1-, BCL10-, or MALT1-deficient lymphocytes, activation of NF-κB and JNK signaling pathways is markedly impaired (6, 24-26). This is manifested in defective lymphocyte proliferation and survival and in reduced immune responses.While the events leading to the activation of the IKK signaling complex downstream of CARMA1 have been well characterized, the signals that down-modulate this pathway are less well understood. Studies of BCL10 turnover have yielded some possible mechanisms (34). After cell activation, BCL10 is posttranslationally modified by both phosphorylation (possibly via IKKβ or CaMKII) and polyubiquitination (polyUb) and undergoes degradation that results in the down-modulation of NF-κB activity. Several ubiquitin protein ligases (E3s), including Itch, NEDD4, cIAP2, and βTrCP, have been reported to drive BCL10 ubiquitination in lymphocytes and to promote its degradation through either lysosomal or proteasomal pathways (7, 12, 27, 37). Overexpression of such E3s downregulates BCL10-dependent pathways, including NF-κB and the production of interleukin-2. Interestingly, antigen receptor-induced phosphorylation and degradation of BCL10 is not observed in the absence of CARMA1 (12), indicating a role for CARMA1 in BCL10 turnover.In this report, we demonstrate that endogenous CARMA1 is directly ubiquitinated and degraded by the proteasome in AR-activated lymphocytes. Structure-function analyses showed that the primary targets for ubiquitination within CARMA1 were localized within the MAGUK region. Mutation of all lysine residues (potential ubiquitin modification targets) to arginines within the MAGUK of CARMA1 produced a hyperactive molecule that promoted high NF-κB and JNK activation levels. Unlike the wild-type (WT) CARMA1 molecule, a lysine-to-arginine mutant CARMA1 was not modified by polyUb chains upon cell activation and had a resulting increase in protein stability. We identified a region between the SH3 and GUK domains that is highly similar to a region (termed the Hook region) that regulates the conformation of the MAGUK protein PSD-95. Notably, deletion of this Hook region was sufficient to trigger polyUb of CARMA1 as well as PSD-95 and Dlgh1, other MAGUK family proteins. These data suggest that activation of CARMA1 initiates a feedback mechanism controlled by the MAGUK domain that triggers ubiquitination and degradation of the CARMA1 signalosome, thereby limiting NF-κB and JNK signaling.  相似文献   

16.
17.
Members of the tumor necrosis factor (TNF) superfamily of receptors such as Fas/CD95 and the TNF-related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5 induce apoptosis by recruiting adaptor molecules and caspases. The central adaptor molecule for these receptors is a death domain-containing protein, FADD, which binds to the activated receptor via death domain-death domain interactions. Here, we show that in addition to the death domain, the C-terminal tails of DR4 and DR5 positively regulate FADD binding, caspase activation and apoptosis. In contrast, the corresponding region in the Fas receptor has the opposite effect and inhibits binding to the receptor death domain. Replacement of wild-type or mutant DR5 molecules into DR5-deficient BJAB cells indicates that some agonistic antibodies display an absolute requirement for the C-terminal tail for FADD binding and signaling while other antibodies can function in the absence of this mechanism. These data demonstrate that regions outside the death domains of DR4 and DR5 have opposite effects to that of Fas in regulating FADD recruitment and show that different death receptor agonists can use distinct molecular mechanisms to activate signaling from the same receptor.  相似文献   

18.
CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)-κB. However, it is still unknown which receptor functions upstream of CARMA3 to trigger NF-κB activation. Recently, several studies have demonstrated that CARMA3 serves as an indispensable adaptor protein in NF-κB signaling under some G protein-coupled receptors (GPCRs), such as lysophosphatidic acid (LPA) receptor and angiotensin (Ang) II receptor. Mechanistically, CARMA3 recruits its essential downstream molecules Bcl10 and MALT1 to form the CBM (CARMA3-Bcl10-MALT1) signalosome whereby it triggers NF-κB activation. GPCRs and NF-κB play pivotal roles in the regulation of various cellular functions, therefore, aberrant regulation of the GPCR/NF-κB signaling axis leads to the development of many types of diseases, such as cancer and atherogenesis. Recently, the GPCR/CARMA3/NF-κB signaling axis has been confirmed in these specific diseases and it plays crucial roles in the pathogenesis of disease progression. In ovarian cancer cell lines, knockdown of CARMA3 abolishes LPA receptor-induced NF-κB activation, and reduces LPA-induced ovarian cancer invasion. In vascular smooth cells, downregulation of CARMA3 substantially impairs Ang-II-receptor-induced NF-κB activation, and in vivo studies have confirmed that Bcl10-deficient mice are protected from developing Ang-II-receptor-induced atherosclerosis and aortic aneurysms. In this review, we summarize the biology of CARMA3, describe the role of the GPCR/CARMA3/NF-κB signaling axis in ovarian cancer and atherogenesis, and speculate about the potential roles of this signaling axis in other types of cancer and diseases. With a significant increase in the identification of LPA- and Ang-II-like ligands, such as endothelin-1, which also activates NF-κB via CARMA3 and contributes to the development of many diseases, CARMA3 is emerging as a novel therapeutic target for various types of cancer and other diseases.  相似文献   

19.
S Li  X Yang  J Shao  Y Shen 《PloS one》2012,7(8):e42775
The CBM complex (CARMA1, BCL10 and MALT1) plays a crucial role in B and T lymphocyte activation. CARMA1 serves as a scaffold for BCL10, MALT1 and other effector proteins and regulates various signaling pathways related to the immune response. The assembly of CARMA1 and BCL10 is mediated through a CARD-CARD interaction. Here, we report the crystal structure of the CARD domain of CARMA1 at a resolution of 1.75 Å. The structure consists of six helices, as previously determined for CARD domains. Structural and computational analysis identified the binding interface between CARMA1-CARD and BCL10-CARD, which consists of a basic patch in CARMA1 and an acidic patch in BCL10. Site-directed mutagenesis, co-immunoprecipitation and an NF-κB activation assay confirmed that the interface is necessary for association and downstream signaling. Our studies provide molecular insight into the assembly of CARMA1 and BCL10.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号