首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which the region-specific expression patterns of clustered genes evolve are poorly understood. The epididymis is an ideal organ to examine this, as it is a highly segmented tissue that differs significantly in structure between closely related species. Here we examined this issue through analysis of the rapidly evolving X-linked reproductive homeobox (Rhox) gene cluster, the largest known homeobox gene cluster in metazoans. In the mouse, we found that most Rhox genes are expressed primarily in the caput region of the epididymis, a site where sperm mature and begin acquiring forward motility. This region-specific expression pattern depends, in part, on the founding member of the Rhox cluster--Rhox5--as targeted mutation of Rhox5 greatly diminishes the expression of several other family members in the caput region. In the rat, Rhox5 expression switches from the caput to the site of sperm storage: the cauda. All Rhox genes under the control of Rhox5 in the mouse epididymis display a concomitant change in their regional expression in the rat epididymis. Our results lead us to propose that widespread changes in the region-specific expression pattern of genes over evolutionary time can be the result of alterations of one or only a few master regulatory genes.  相似文献   

2.
3.
4.
The epididymis is a useful model system to understand the mechanisms that govern region-specific gene expression, as many gene products display spatially restricted expression within this organ. However, surprisingly little is known about how this regulation is achieved. Here, we report regulatory sequences from the Pem homeobox gene that drive expression in different subregions of the mouse epididymis in vivo. We found that the 0.3-kb 5'-flanking sequence (region I) from the Pem proximal promoter (Pem Pp) was sufficient to confer androgen-dependent and developmentally regulated expression in the caput region of the epididymis. Expression was restricted to the normal regions of expression of Pem in the caput (segments 2-4), but there was also aberrant expression in the corpus region. This corpus misexpression was extinguished when 0.6 kb of Pem Pp 5'-flanking sequence was included in the transgene, indicating that one or more negative regulatory elements exist between 0.6 and 0.3 kb upstream of the Pem Pp start site (region II). When heterologous sequences were introduced upstream of the Pem Pp, expression was further restricted, mainly to caput segment 3, implying that the Pem Pp has segment-specific regulatory elements. To our knowledge, the regulatory regions we have identified are the shortest so far defined that dictate regionally localized expression in the epididymis in vivo. They may be useful for identifying the factors that regulate region-specific expression in the epididymis, for expressing and conditionally knocking out genes in different subregions of the epididymis, for treating male infertility, and for generating novel methods of male contraception.  相似文献   

5.
6.
Region-specific gene expression in the epididymis   总被引:1,自引:0,他引:1  
The epididymis is responsible for post-testicular sperm maturation, which consists in the acquisition of forward motility and fertilizing ability. This organ is composed of three main anatomical regions - the caput, corpus and cauda epididymidis - which possess distinct gene expression profiles, ensuring different epididymal functions essential to the different steps of sperm maturation. Since many genes display spatially restricted expression in the epididymis, this organ constitutes a model of choice to study the mechanisms that govern region-specific gene expression. Factors such as steroid hormones, lumicrine factors and temperature affect the pattern of gene expression in the epididymis. Recently, the contribution of small RNAs in epididymal gene regulation has been investigated and constitutes a promising avenue for clinical application with regard to male fertility.  相似文献   

7.
8.
9.
The effects of dilauroylphosphatidylcholine (PC12) on ram epididymal sperm motility, acrosome reaction (AR) induction, plasma membrane permeability, mitochondrial function, and sperm penetration into zona-free hamster eggs were determined. PC12 (50 microM) induced cell motility in caput and cauda sperm, as measured by subjective estimation and automated motility analysis. Motion parameters of treated caput sperm approached those of control ejaculated sperm. Flow cytometric analysis revealed that membrane permeability to propidium iodide and mitochondrial uptake of rhodamine 123 changed during epididymal transit. PC12 induced the AR in sperm from all epididymal regions relative to control incubated sperm (caput 17% vs. control 8%; corpus 29% vs. control 13%; proximal cauda 48% vs. control 4%; distal cauda 51% vs. control 9%). After PC12 treatment, egg penetration by sperm was increased for sperm from the corpus (corpus 7% vs. control 0%) and cauda (proximal 48% vs. control 0%; distal 51% vs. control 0%), but not for caput sperm (caput 0% vs. control 0%). These studies establish that some sperm in each region of the epididymis possess the capacity for movement and the AR. Caput sperm, however, were unique in that they could not penetrate eggs. Additional maturational changes must occur in the caput and/or corpus epididymidis before penetration capacity can be expressed.  相似文献   

10.
Bone morphogenetic proteins (BMPs) play essential roles in many aspects of developmental biology. We have previously shown that Bmp7, Bmp8a, and Bmp8b of the 60A class of Bmp genes have additive effects in spermatogenesis and in maintaining the epididymal integrity of the caput and caudal regions. Here we report that Bmp4 of the Dpp class has a unique expression pattern in the developing testis and epididymis. Bmp4 heterozygous males on a largely C57BL/6 background show compromised fertility due to degeneration of germ cells, reduced sperm counts, and decreased sperm motility. More interestingly, some of these males show extensive degeneration of the epididymal epithelium in the corpus region, rather than in the caput and cauda regions as for Bmp7 and Bmp8 mutants. Thus, these genetic data reveal a region-specific requirement of different classes of BMPs for epididymal epithelium to survive and have significant implications on male reproductive health and perhaps birth control.  相似文献   

11.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

12.
13.
We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.  相似文献   

14.
Micropuncture was used to collect pure suspensions of sperm from the caput and cauda regions of chimpanzee epididymides, which were analyzed with a Motion Analysis VP-110. Sperm recovered from the caput region showed no forward motility. Incubation of these sperm with cauda epididymal fluid affected motility in 62%–90% of the sperm. Dilution of cauda sperm into buffer containing >50 mM theophylline resulted in immediate initiation of progressive forward motility. Although this motility was maintained by at least 50% of the sperm for over 5 hr, these “activated” caput sperm did not penetrate zona-free hamster ova. These data show that sperm from the caput epididymis of the chimpanzee have the capacity for normal motility but do not have the capacity to bind to and penetrate an ovum. Cauda epididymal chimpanzee sperm were motile at the time of recovery and this motility was maintained for over 5 hr. These sperm penetrated both hamster zona-free ova and intact chimpanzee ova. These data show that sperm from the cauda epididymis of the chimpanzee have the capacity for normal motility and also have the capacity to bind to and penetrate an ovum. This is the first use of computer assisted analysis to quantify motility in maturing nonhuman primate sperm.  相似文献   

15.
Tissue and cell specificity of immobilin biosynthesis   总被引:1,自引:0,他引:1  
The mechanisms for the initiation of sperm motility have been poorly understood until recently. Immobilin is a novel mucin glycoprotein of high molecular weight found in the cauda epididymis of the rat that, at concentrations equivalent to those found in native cauda epididymal fluid, reversibly inhibits sperm motility. In this study, immobilin was purified from rat cauda epididymal fluid to apparent homogeneity and used to generate polyclonal antibody in rabbits. The antibody was characterized by immunoblotting, and immunofluorescence was used to localize immobilin in paraffin sections of components of the reproductive system of adult male rats. Immobilin was not detectable in the efferent duct and was first detectable in the apical portion of some epithelial cells of the initial segment of the caput epididymis. Immobilin was detectable intracellularly only in cells of the caput epididymis. In the corpus and cauda epididymis immobilin was detectable only in the lumen of the tubules. Immunoprecipitation of immobilin radiolabeled in vitro confirmed that immobilin biosynthesis in the adult rat is restricted to the caput epididymis. Principal cells in the caput epididymis synthesize immobilin and secrete it into the lumen of the tubules to travel with the sperm into the cauda.  相似文献   

16.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

17.
18.
Based upon findings that the scatter factor/hepatocyte growth factor (SF/HGF) has strong mitogenic and motogenic properties, and that the sperm cell acquires its fertilizing capacity and motility in the distal parts of mammalian epididymis, the present study was conducted to investigate the role of SF/HGF in initiation of sperm cell motility. This was investigated by determining the expression of SF/HGF in various regions of the murine male genital tract by scatter and cell tracking assays using MDCK epithelial cells, Western blot procedure, and the immunohistochemical procedure using paraffin sections of various regions of the male genital tract. The findings from all these assays indicate that SF/HGF is differentially expressed in various parts of the male genital tract with slight or no expression in the testes, caput epididymis, and vas deferens, and with the highest expression in cauda and corpus (distal) epididymis followed by expression in the corpus (proximal) epididymis. This region-specific SF/HGF expression pattern coincides with the pattern of acquiring the fertilizing capacity and motility by the sperm cell during its transit through the male genital tract. However, wherever SF/HGF was expressed in the male genital tract, its molecular weight was slightly higher (Mr, 82 kD), compared to the SF/HGF expressed in various other somatic tissues (Mr, 78 kD), indicating that the genital tract SF/HGF may be a different molecular species that shares some immunoreactive epitopes with the somatic cell SF/HGF. Incubation of immotile sperm from caput epididymis with the purified human placental SF/HGF of 78 kD initiated motility in 5–15% of sperm population. These results strongly suggest that the SF/HGF-like activity is expressed in the male genital tract in a region-specific manner, and this activity may have a role in initiation of sperm motility acquired during its transit through the epididymis in mammals. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function.  相似文献   

20.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号