首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Liver dendritic cells (DC) are believed to play important roles in liver immunity, autoimmunity, and in the regulation of hepatic allograft acceptance. However, limited information is available on the phenotypes and functions of DC in the liver. To address this issue, we isolated DC from murine liver using procedures that do not involve collagenase, and characterized the freshly isolated DC population that had not been subjected to in vitro expansion. Thence, based on the expression of CD4, B220, and CD11b, four subsets or groups of hepatic NK1.1(-)CD11c(+) DC were identified with the following phenotypes: B220(+)CD4(+), B220(+)CD4(-), B220(-)CD11b(+), and B220(-)CD11b(-). Each subset was further characterized both phenotypically and functionally. In addition to unique phenotypic expression, each subset displayed different allostimulation capability in mixed lymphocyte reaction assays. All four groups developed DC morphology following in vitro culture with activation agents and synthesized distinct patterns of cytokines in response to different stimuli. Taken together, our results suggest that groups I and II are IFN-alpha-producing plasmacytoid DC, group III cells are myeloid-related DC, while group IV is a heterogeneous population containing both myeloid- and lymphoid-related DC. Our results demonstrate the highly heterogeneous nature of hepatic DC, which is in agreement with the unique requirements for APC in the complex liver environment.  相似文献   

3.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

4.
STAT3 activation has been observed in several autoimmune diseases, suggesting that STAT3-mediated pathways promote pathologic immune responses. We provide in vivo evidence that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating T(H)17 T cell responses. We show that STAT3 is a master regulator of this pathogenic T cell subtype, acting at multiple levels in vivo, including T(H)17 T cell differentiation and cytokine production, as well as induction of RORgamma t and the IL-23R. Neither naturally occurring T(H)17 cells nor T(H)17-dependent autoimmunity occurs when STAT3 is ablated in CD4 cells. Furthermore, ablation of STAT3 signaling in CD4 cells results in increased T(H)1 responses, indicating that STAT3 signaling skews T(H) responses away from the T(H)1 pathway and toward the T(H)17 pathway. Thus, STAT3 is a candidate target for T(H)17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.  相似文献   

5.
The IL-10-like cytokine IL-22 is produced by activated T cells. In this study, we analyzed the role of this cytokine system in hepatic cells. Expression studies were performed by RT-PCR and quantitative PCR. Signal transduction was analyzed by Western blot experiments and ELISA. Cell proliferation was measured by MTS and [(3)H]thymidine incorporation assays. Hepatocyte regeneration was studied in in vitro restitution assays. Binding of IL-22 to its receptor complex expressed on human hepatic cells and primary human hepatocytes resulted in the activation of MAPKs, Akt, and STAT proteins. IL-22 stimulated cell proliferation and migration, which were both significantly inhibited by the phosphatidylinositol 3-kinase inhibitor wortmannin. IL-22 increased the mRNA expression of suppressor of cytokine signaling (SOCS)-3 and the proinflammatory cytokines IL-6, IL-8, and TNF-alpha. SOCS-1/3 overexpression abrogated IL-22-induced STAT activation and decreased IL-22-mediated liver cell regeneration. Hepatic IL-22 mRNA expression was detectable in different forms of human hepatitis, and hepatic IL-22 mRNA levels were increased in murine T cell-mediated hepatitis in vivo following cytomegalovirus infection, whereas no significant differences were seen in an in vivo model of ischemia-reperfusion injury. In conclusion, IL-22 promotes liver cell regeneration by increasing hepatic cell proliferation and hepatocyte migration through the activation of Akt and STAT signaling, which is abrogated by SOCS-1/3 overexpression.  相似文献   

6.
Zhao L  Tang Y  You Z  Wang Q  Liang S  Han X  Qiu D  Wei J  Liu Y  Shen L  Chen X  Peng Y  Li Z  Ma X 《PloS one》2011,6(4):e18909
T helper cells that produce IL-17 (Th17 cells) have recently been identified as the third distinct subset of effector T cells. Emerging data suggests that Th17 cells play an important role in the pathogenesis of many liver diseases by regulating innate immunity, adaptive immunity, and autoimmunity. In this study, we examine the role and mechanism of Th17 cells in the pathogenesis of autoimmune hepatitis (AIH). The serum levels of IL-17 and IL-23, as well as the frequency of IL-17+ cells in the liver, were significantly elevated in patients with AIH, compared to other chronic hepatitis and healthy controls. The hepatic expressions of IL-17, IL-23, ROR-γt, IL-6 and IL-1β in patients with AIH were also significantly increased and were associated with increased inflammation and fibrosis. IL-17 induces IL-6 expression via the MAPK signaling pathway in hepatocytes, which, in turn, may further stimulate Th17 cells and forms a positive feedback loop. In conclusion, Th17 cells are key effector T cells that regulate the pathogenesis of AIH, via induction of MAPK dependent hepatic IL-6 expression. Blocking the signaling pathway and interrupting the positive feedback loop are potential therapeutic targets for autoimmune hepatitis.  相似文献   

7.
The tissue inhibitor of metalloproteinases-3 (TIMP3) is a multifunctional protein tightly associated with the extracellular matrix (ECM). A specific type of mutation in TIMP3 which results in potentially unpaired cysteine residues at the C-terminus of the protein has been shown to cause Sorsby fundus dystrophy (SFD), an autosomal dominant retinopathy of late onset. An early finding in SFD is a striking accumulation of protein and lipid material in Bruch's membrane, a multilayered ECM structure located between the choroid and the RPE. To study the molecular mechanisms underlying SFD pathology, we recently generated two mouse lines, one deficient in Timp3 (Timp3(-/-)) and one carrying an SFD-related mutation in the orthologous murine Timp3 gene (Timp3(S156C/S156C)). We now established immortalized fibroblast cells from the mutant mouse strains and provide evidence that the various cell lines display distinct morphological and physiological features that are dependent on the mutational status of the Timp3 protein in the secreted ECM. We show that matrix metalloproteinase (MMP) activity and inhibitory properties of Timp3 are not affected by the SFD-associated mutation. We further demonstrate that Timp3(S156C) protein accumulates in the ECM of the mutant fibroblast cells and that this accumulation is not due to a prolonged turnover rate of mutant vs. normal Timp3. We also show that the relative abundance of mutant and normal Timp3 in the ECM has no measurable effects on cellular phenotypes. Together, these findings suggest (i) a functional role of normal Timp3 in pathways determining cellular morphology and (ii) a loss of this particular function as a consequence of the Ser156Cys mutation. We therefore hypothesize that SFD pathogenesis is due to a loss-of-function mutation in TIMP3.  相似文献   

8.
9.
Leptin has direct effects not only on neuroendocrine function and metabolism, but also on T cell-mediated immunity. We report in this study that leptin receptor (ObR) is expressed on resting normal mouse CD4(+), CD8(+), B cells, and monocyte/macrophages. ObR expression is up-regulated following cell activation, but with different kinetics, in different lymphocyte subsets. Leptin binding to ObR results in increased STAT-3 activation in T cells, with a different activation pattern in resting vs anti-CD3 Ab stimulated T cells. Leptin also promotes lymphocyte survival in vitro by suppressing Fas-mediated apoptosis. B lymphocytes appear to be more susceptible to the antiapoptotic effects of leptin, and they show higher surface expression of ObR, compared with T cells. Moreover, CD4(+) T cells isolated from ObR-deficient mice displayed a reduced proliferative response, compared with normal controls. Furthermore, ObR/STAT-3-mediated signaling in T lymphocytes is decreased in the diet-induced obese mouse model of obesity and leptin resistance. In summary, our findings show that the ObR is expressed on normal mouse lymphocyte subsets, that leptin plays a role in lymphocyte survival, and that leptin alters the ObR/STAT-3-mediated signaling in T cells. Taken together, our data further support the notion that nutritional status acting via leptin-dependent mechanisms may alter the nature and vigor of the immune response.  相似文献   

10.
Altered T cell function in systemic lupus erythematosus (SLE) is determined by various molecular and cellular abnormalities, including increased IL-17 production. Recent evidence suggests a crucial role for signaling lymphocyte activation molecules (SLAMs) in the expression of autoimmunity. In this study, we demonstrate that SLAMF3 and SLAMF6 expression is increased on the surface of SLE T cells compared with normal cells. SLAM coengagement with CD3 under Th17 polarizing conditions results in increased IL-17 production. SLAMF3 and SLAMF6 T cell surface expression and IL-17 levels significantly correlate with disease activity in SLE patients. Both naive and memory CD4(+) T cells produce more IL-17 in response to SLAM costimulation as compared with CD28 costimulation. In naive CD4(+) cells, IL-17 production after CD28 costimulation peaks on day 3, whereas costimulation with anti-SLAMF3 and anti-SLAMF6 Abs results in a prolonged and yet increasing production during 6 d. Unlike costimulation with anti-CD28, SLAM costimulation requires the presence of the adaptor molecule SLAM-associated protein. Thus, engagement of SLAMF3 and SLAMF6 along with Ag-mediated CD3/TCR stimulation represents an important source of IL-17 production, and disruption of this interaction with decoy receptors or blocking Abs should mitigate disease expression in SLE and other autoimmune conditions.  相似文献   

11.
While it has long been understood that CD40 plays a critical role in the etiology of autoimmunity, glycobiology is emerging as an important contributor. CD40 signaling is also gaining further interest in transplantation and cancer therapies. Work on CD40 signaling has focused on signaling outcomes and blocking of its ligand, CD154, while little is known about the actual receptor itself and its control. We demonstrated that CD40 is in fact several receptors occurring as constellations of differentially glycosylated forms of the protein that can sometimes form hybrid receptors with other proteins. An enticing area of autoimmunity is differential glycosylation of immune molecules leading to altered signaling. Galectins interact with carbohydrates on proteins to effect such signaling alterations. Studying autoimmune prone NOD and non-autoimmune BALB/c mice, here we reveal that in-vivo CD40 signals alter the glycosylation status of non-autoimmune derived CD4 T cells to resemble that of autoimmune derived CD4 T cells. Galectin-9 interacts with CD40 and, at higher concentrations, prevents CD40 induced proliferative responses of CD4(lo)CD40(+) effector T cells and induces cell death through a Tim-3 independent mechanism. Interestingly, galectin-9, at lower concentrations, alters the surface expression of CD3, CD4, and TCR, regulating access to those molecules and thereby redirects the inflammatory cytokine phenotype and CD3 induced proliferation of autoimmune CD4(lo)CD40(+) T cells. Understanding the dynamics of the CD40 receptor(s) and the impact of glycosylation status in immunity will gain insight into how to maintain useful CD40 signals while shutting down detrimental ones.  相似文献   

12.
Immune cells are modulated through the crosslinking of receptors named "immunoreceptors". Ligation of immunoreceptors by their ligands induces a tyrosine-phosphorylation signal that is essential for cell activation or inhibition. Physiologically, immunoreceptor triggering is not enough for cell activation, and stimulation of co-receptors is necessary for antigen-evoked cytokine production. Thus, signal transduction pathways mediated by proteins that regulate cytokine secretion are critical to achieve an effective immune response of the host, where the balance between positive and negative signaling allows effective immune responses, preventing tolerance and autoimmunity. This review deals with recent studies based on the role of the receptor signaling lymphocytic activation molecule (SLAM), a signaling protein that modulates cytokine secretion by immune cells, and the transmembrane glycoprotein CD31, which plays multiple roles in cellular signaling events by modulating the balance between inhibitory and stimulatory signals to immune cells. Recent studies have shed light on the ability of these molecules to transmit different signals that regulate the ability of innate and adaptive immune cells to synthesize stimulatory and inhibitory cytokines.  相似文献   

13.
The hepatoprotective effect of IL-6 on various forms of liver injury including T cell-mediated hepatitis has been well documented, and it is believed that induction of antiapoptotic proteins is an important mechanism. In this study, we provide evidence suggesting an additional mechanism involved in the protective role of IL-6 in T cell-mediated hepatitis. In NKT cell-depleted mice, Con A-induced liver injury is diminished; this can be restored by the adoptive transfer of liver mononuclear cells or NKT cells from wild-type mice, but not from IL-6-treated mice. In vitro IL-6 treatment inhibits the ability of mononuclear cells to restore Con A-induced liver injury in NKT-depleted mice, whereas the same treatment does not inhibit purified NKT cells from restoring the injury. The addition of CD3(+) T cells or CD4(+) T cells can restore the inhibitory effect of IL-6 on purified NKT cells, whereas the addition of CD3(+) T cells from CD4-deficient mice fails to restore this inhibitory effect. The expression of IL-6R was detected in 52.6% of hepatic CD3(+) T cells and 32.7% of hepatic CD4(+) T cells, but only in 3.9% of hepatic NK and 1.5% of hepatic NKT cells. Finally, treatment with IL-6 induces STAT3 activation in hepatic lymphocytes and hepatic T cells, and blocking such activation abolishes the inhibitory effect of IL-6 on hepatic lymphocytes to restore liver injury. Taken together, these findings suggest that in addition to its antiapoptotic abilities, as previously well documented, IL-6/STAT3 inhibits NKT cells via targeting CD4(+) T cells and consequently prevents T cell-mediated hepatitis.  相似文献   

14.
The balance between regulatory and effector functions is important for maintaining efficient immune responses, while avoiding autoimmunity. The inflammatory skin disease psoriasis is sustained by the ongoing activation of pathogenic effector T cells. We found that a CD4(+) T lymphocyte subpopulation in peripheral blood, phenotypically CD25(high), CTLA-4(+), Foxp3(high) (regulatory T (Treg) cells), is deficient in its suppressor activity in psoriasis. This was associated with accelerated proliferation of CD4(+) responder T cells in psoriasis, the majority of which expressed CXCR3. Nevertheless, criss-cross experiments isolated the defect to psoriatic Treg cells. To examine Treg cells in a nonlymphoid tissue of a human T cell-mediated disease, Treg cells were also analyzed and isolated from the site of inflammation, psoriatic lesional skin. At the regulatory vs effector T cells ratios calculated to be present in skin, however, the psoriatic Treg cell population demonstrated decreased suppression of effector T cells. Thus, dysfunctional blood and target tissue CD4(+)CD25(high) Treg cell activity may lead to reduced restraint and consequent hyperproliferation of psoriatic pathogenic T cells in vivo. These findings represent a critical component of human organ-specific autoimmune disease and may have important implications with regard to the possible therapeutic manipulation of Treg cells in vivo.  相似文献   

15.
Hojilla CV  Jackson HW  Khokha R 《PloS one》2011,6(10):e26718
Post-lactation mammary involution is a homeostatic process requiring epithelial apoptosis and clearance. Given that the deficiency of the extracellular metalloproteinase inhibitor TIMP3 impacts epithelial apoptosis and heightens inflammatory response, we investigated whether TIMP3 regulates these distinct processes during the phases of mammary gland involution in the mouse. Here we show that TIMP3 deficiency leads to TNF dysregulation, earlier caspase activation and onset of mitochondrial apoptosis. This accelerated first phase of involution includes faster loss of initiating signals (STAT3 activation; TGFβ3) concurrent with immediate luminal deconstruction through E-cadherin fragmentation. Epithelial apoptosis is followed by accelerated adipogenesis and a greater macrophage and T-cell infiltration in Timp3(-/-) involuting glands. Crossing in Tnf deficiency abrogates caspase 3 activation, but heightens macrophage and T-cell influx into Timp3(-/-) glands. The data indicate that TIMP3 differentially impacts apoptosis and inflammatory cell influx, based on involvement of TNF, during the process of mammary involution. An understanding of the molecular factors and wound healing microenvironment of the postpartum mammary gland may have implications for understanding pregnancy-associated breast cancer risk.  相似文献   

16.
Lupus is characterized by disturbances in lymphocyte homeostasis, as demonstrated by the marked accumulation of activated/memory T cells. Here, we provide evidence that proliferation of the CD8+ precursors for the accumulating CD4CD8 T cells in MRL-Faslpr lupus-predisposed mice is, in part, driven by commensal antigens. The ensuing lymphadenopathy is associated with increased production of IL-7 due to expansion of fibroblastic reticular cells, the primary source of this cytokine. The excess IL-7 is not, however, consumed by CD4CD8 T cells due to permanent down-regulation of IL-7Rα (CD127), but instead supports proliferation of autoreactive T cells and progression of autoimmunity. Accordingly, IL-7R blockade reduced T cell activation and autoimmune manifestations even when applied at advanced disease stage. These findings indicate that an imbalance favoring production over consumption of IL-7 may contribute to systemic autoimmunity, and correction of this imbalance may be a novel therapeutic approach in lymphoproliferative and autoimmune syndromes.  相似文献   

17.
Although it is established that failure of regulatory mechanisms underlies many autoimmune diseases, the stimuli that activate autoreactive lymphocytes remain poorly understood. Defining these stimuli will lead to therapeutic strategies for autoimmune diseases. IL-2-deficient mice develop spontaneous autoimmunity, because of a deficiency of regulatory T cells, and on the BALB/c background, they rapidly die from autoimmune hemolytic anemia. To define the importance of costimulatory pathways in various components of this autoimmune disorder, we first intercrossed IL-2-deficient mice with mice lacking CD28 or CD40L. Elimination of CD28 reduced the activation of autoreactive T cells and lymphoproliferation as well as production of autoantibodies, whereas elimination of CD40L reduced autoantibody production without affecting T cell expansion and accumulation. To examine the role of IL-7, we blocked IL-7R signaling with neutralizing Abs. This treatment inhibited the production of autoantibodies and the development of autoimmune hemolytic anemia. Together, these data indicate that specific costimulatory and cytokine signals are critical for the spontaneous autoantibody-mediated disease that develops in IL-2-deficient mice.  相似文献   

18.
Pertussis toxin (PTx) is a bacterial toxin used to enhance the severity of experimental autoimmune diseases such as experimental autoimmune encephalomyelitis. It is known to promote permeabilization of the blood-brain barrier, maturation of APC, activation of autoreactive lymphocytes and alteration of lymphocyte migration. In this study, we show that i.v. injection of PTx in mice induces a decrease in the number of splenic CD4(+)CD25(+) regulatory T cells (Treg cells). Furthermore, PTx not only induces a depletion of the dominant CD4(+)CD25(+)Foxp3(+) subpopulation of splenic Treg cells, but also reduces to a similar extent the CD4(+)CD25(-)Foxp3(+) subpopulation. On a per cell basis, the suppressive properties of the remaining Treg cells are not modified by PTx treatment. The reduction in splenic Treg cells is associated with preferential migration of these cells to the liver. Additionally, Treg cells exhibit a high sensitivity to PTx-mediated apoptosis in vitro. Finally, in vivo depletion of Treg cells by injection of an anti-CD25 Ab, and PTx treatment, present synergistic experimental autoimmune encephalomyelitis exacerbating effects. Therefore, we identify a new effect of PTx and provide an additional illustration of the influence of microbial components on the immune system affecting the balance between tolerance, inflammation and autoimmunity.  相似文献   

19.

Background

The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.

Methods

We used TF-OVA mice, which express ovalbumin in hepatocytes, to investigate the impact of Treg in a model of autoimmune hepatitis. Treg isolated from inflamed livers of TF-OVA mice were tested for their functionality in vitro. By employing double transgenic TF-OVAxDEREG (DEpletion of REGulatory T cells) mice we analyzed whether Treg-depletion aggravates autoimmune inflammation in the liver in vivo.

Results

CD25+Foxp3+ CD4 T cells accumulated in the liver in the course of CD8 T cell-mediated hepatitis. Treg isolated from inflamed livers were functional to suppress CD8 T-cell proliferation in vitro. Depletion of Treg in TF-OVAxDEREG mice dramatically amplified T cell-mediated hepatitis. Repeated administration of antigen-specific CD8 T cells led to a second wave of inflammation only after depletion of Treg.

Conclusion

Our data add to the evidence for an important role of Treg in autoimmune hepatitis and show that Treg reduce the severity of T-cell mediated hepatitis in vivo. They constitute a key immune cell population that actively maintains a tolerogenic milieu in the liver and protects the liver against repeated inflammatory challenges.  相似文献   

20.
Chronic hepatitis C virus (HCV) infection is a leading cause of liver disease. Liver inflammation underlies infection-induced fibrosis, cirrhosis and liver cancer but the processes that promote hepatic inflammation by HCV are not defined. We provide a systems biology analysis with multiple lines of evidence to indicate that interleukin-1β (IL-1β) production by intrahepatic macrophages confers liver inflammation through HCV-induced inflammasome signaling. Chronic hepatitis C patients exhibited elevated levels of serum IL-1β compared to healthy controls. Immunohistochemical analysis of healthy control and chronic hepatitis C liver sections revealed that Kupffer cells, resident hepatic macrophages, are the primary cellular source of hepatic IL-1β during HCV infection. Accordingly, we found that both blood monocyte-derived primary human macrophages, and Kupffer cells recovered from normal donor liver, produce IL-1β after HCV exposure. Using the THP-1 macrophage cell-culture model, we found that HCV drives a rapid but transient caspase-1 activation to stimulate IL-1β secretion. HCV can enter macrophages through non-CD81 mediated phagocytic uptake that is independent of productive infection. Viral RNA triggers MyD88-mediated TLR7 signaling to induce IL-1β mRNA expression. HCV uptake concomitantly induces a potassium efflux that activates the NLRP3 inflammasome for IL-1β processing and secretion. RNA sequencing analysis comparing THP1 cells and chronic hepatitis C patient liver demonstrates that viral engagement of the NLRP3 inflammasome stimulates IL-1β production to drive proinflammatory cytokine, chemokine, and immune-regulatory gene expression networks linked with HCV disease severity. These studies identify intrahepatic IL-1β production as a central feature of liver inflammation during HCV infection. Thus, strategies to suppress NLRP3 or IL-1β activity could offer therapeutic actions to reduce hepatic inflammation and mitigate disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号