首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ecological impact of an invasive species can depend on the behavioural responses of native fauna to the invader. For example, the greatest risk posed by invasive cane toads (Rhinella marina Bufonidae) in tropical Australia is lethal poisoning of predators that attempt to eat a toad; and thus, a predator's response to a toad determines its vulnerability. We conducted standardized laboratory trials on recently captured (toad‐naïve) predatory snakes and lizards, in advance of the toad invasion front as it progressed through tropical Australia. Responses to a live edible‐sized toad differed strongly among squamate species. We recorded attacks (and hence, predator mortality) in scincid, agamid and varanid lizards, and in elapid, colubrid and pythonid snakes. Larger‐bodied predators were at greater risk, and some groups (elapid snakes and varanid lizards) were especially vulnerable. However, feeding responses differed among species within families and within genera. Some taxa (notably, many scincid and agamid lizards) do not attack toads; and many colubrid snakes either do not consume toads, or are physiologically resistant to the toad's toxins. Intraspecific variation in responses means that even in taxa that apparently are unaffected by toad invasion at the population level, some individual predators nonetheless may be fatally poisoned by invasive cane toads.  相似文献   

2.
Although invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time. Populations of large predators (e.g., varanid and scincid lizards, elapid snakes, freshwater crocodiles, and dasyurid marsupials) may be imperilled by toad invasion, but impacts vary spatially even within the same predator species. Some of the taxa severely impacted by toad invasion recover within a few decades, via aversion learning and longer-term adaptive changes. No native species have gone extinct as a result of toad invasion, and many native taxa widely imagined to be at risk are not affected, largely as a result of their physiological ability to tolerate toad toxins (e.g., as found in many birds and rodents), as well as the reluctance of many native anuran-eating predators to consume toads, either innately or as a learned response. Indirect effects of cane toads as mediated through trophic webs are likely as important as direct effects, but they are more difficult to study. Overall, some Australian native species (mostly large predators) have declined due to cane toads; others, especially species formerly consumed by those predators, have benefited. For yet others, effects have been minor or have been mediated indirectly rather than through direct interactions with the invasive toads. Factors that increase a predator's vulnerability to toad invasion include habitat overlap with toads, anurophagy, large body size, inability to develop rapid behavioral aversion to toads as prey items, and physiological vulnerability to bufotoxins as a result of a lack of coevolutionary history of exposure to other bufonid taxa.  相似文献   

3.
The invasion of cane toads (Rhinella marina) through Australia imperils native predators that are killed if they consume these toxic anurans. The magnitude of impact depends upon the predators’ capacity for aversion learning: toad impact is lower if predators can learn not to attack toads. In laboratory trials, we assessed whether bluetongue lizards (Tiliqua scincoides) – a species under severe threat from toads – are capable of learned taste aversion and whether we can facilitate that learning by exposing lizards to toad tissue combined with a nausea‐inducing chemical (lithium chloride). Captive bluetongues rapidly learned to avoid the ‘unpalatable’ food. Taste aversion also developed (albeit less strongly) in response to meals of minced cane toad alone. Our data suggest that taste aversion learning may help bluetongue lizards survive the onslaught of cane toads, but that many encounters will be fatal because the toxin content of toads is so high relative to lizard tolerance of those toxins. Thus, baiting with nausea‐inducing (but non‐lethal) toad products might provide a feasible management option to reduce the impact of cane toad invasion on these native predators.  相似文献   

4.
Biological invasions can expose native predators to novel prey which may be less nutritious or detrimental to predators. The introduction and subsequent spread of cane toads (Bufo marinus) through Australia has killed many anuran-eating snakes unable to survive the toad’s toxins. However, one native species, the keelback snake (Tropidonophis mairii), is relatively resistant to toad toxins and remains common in toad-infested areas. Is the keelback’s ability to coexist with toads a function of its ancestral Asian origins, or a consequence of rapid adaptation since cane toads arrived in Australia? And does the snake’s feeding preference for frogs rather than toads reflect an innate or learned behaviour? We compared keelback populations long sympatric with toads with a population that has encountered toads only recently. Unlike toad-vulnerable snake species, sympatry with toads has not affected keelback toxin tolerances or feeding responses: T. mairii from toad-sympatric and toad-naïve populations show a similar sensitivity to toad toxin, and a similar innate preference for frogs rather than toads. Feeding responses of neonatal keelbacks demonstrate that learning plays little or no role in the snake’s aversion to toads. Thus, behavioural aversion to B. marinus as prey, and physiological tolerance to toad toxins are pre-existing innate characteristics of Australian keelbacks rather than adaptations to the cane toad’s invasion of Australia. Such traits were most likely inherited from ancestral keelbacks that adapted to the presence of bufonids in Asia. Our results suggest that the impact of invasive species on native taxa may be strongly influenced by the biogeographic histories of the species involved.  相似文献   

5.
The impact of invasive predators on native prey has attracted considerable scientific attention, whereas the reverse situation (invasive species being eaten by native predators) has been less frequently studied. Such interactions might affect invasion success; an invader that is readily consumed by native species may be less likely to flourish in its new range than one that is ignored by those taxa. Invasive cane toads (Rhinella marina) in Australia have fatally poisoned many native predators (e.g., marsupials, crocodiles, lizards) that attempt to ingest the toxic anurans, but birds are more resistant to toad toxins. We quantified prey preferences of four species of wading birds (Nankeen night heron, purple swamphen, pied heron, little egret) in the wild, by offering cane toads and alternative native prey items (total of 279 trays offered, 14 different combinations of prey types). All bird species tested preferred the native prey, avoiding both tadpole and metamorph cane toads. Avoidance of toads was strong enough to reduce foraging on native prey presented in combination with the toads, suggesting that the presence of cane toads could affect predator foraging tactics, and reduce the intensity of predation on native prey species found in association with toads.  相似文献   

6.
The invasion of a toxic prey type can differentially affect closely related predator species. In Australia, the invasive Cane Toad (Rhinella marina) kills native anurophagous predators that cannot tolerate the toad’s toxins; but predators that are physiologically resistant (i.e., belong to lineages that entered Australia recently from Asia, where toads of other species are common) have been more resilient. In the current study, we examine the case of an Asian-derived predator lineage that relies on behavioural not physiological adaptations to deal with toads. Despite their Asian origins, Common Tree Snakes (Dendrelaphis punctulatus) are highly sensitive to toad toxins; yet this snake has not declined in abundance due to toads. We exposed captive (field-collected) snakes to toads of different sizes and ontogenetic stages, to quantify feeding responses and outcomes. Tree Snakes were less likely to attack toads than to attack native frogs, and rarely retained their hold on large toads. Tree Snakes ingested frogs of a wide range of body sizes but only ingested very small toads (<?1 g vs. up to 30 g for frogs). Behavioural responses were virtually identical between Tree Snakes from invaded versus yet-to-be-invaded areas, suggesting that preadaptation (from Asia) rather than adaptation (within Australia) is the key to successful utilisation of this novel but potentially toxic prey resource. Nonetheless, a previously-documented shift in relative head sizes of Tree Snakes coincident with toad invasion suggests that the ancestral behavioural tactic may have been reinforced by a recent morphological shift that further reduces maximal prey size, and hence the risk of fatal poisoning.  相似文献   

7.
The ability of a native predator to adjust to a dangerously toxic invasive species is key to avoiding an ongoing suppression of the predator's population and the trophic cascade of effects that can result. Many species of anurophagous predators have suffered population declines due to the cane toad's (Rhinella marina: Bufonidae) invasion of Australia; these predators can be fatally poisoned from attempting to consume the toxic toad. We studied one such toad‐vulnerable predator, the yellow‐spotted monitor (Varanus panoptes: Varanidae), testing whether changes to the predator's feeding behaviour could explain how the species persists following toad invasion. Wild, free‐roaming lizards from (1) toad‐naïve and (2) toad‐exposed populations were offered non‐toxic native frogs and slightly toxic cane toads (with parotoid glands removed) in standardized feeding trials. Toad‐naïve lizards readily consumed both frogs and toads, with some lizards displaying overt signs of illness after consuming toads. In contrast, lizards from toad‐exposed populations consumed frogs but avoided toads. Repeated encounters with toads did not modify feeding responses by lizards from the toad‐naïve populations, suggesting that aversion learning is limited (but may nonetheless occur). Our results suggest that this vulnerable predator can adjust to toad invasion by developing an aversion to feeding on the toxic invader, but it remains unclear as to whether the lizard's toad‐aversion arises via adaptation or learning.  相似文献   

8.
Understanding the impacts that invasive vertebrates have on terrestrial ecosystems extends primarily to invaders’ impacts on species with which they interact directly through mechanisms such as predation, competition and habitat modification. In addition to direct effects, invaders can also initiate ecological cascades via indirect population level effects on species with which they do not directly interact. However, evidence that invasive vertebrates initiate ecological cascades in terrestrial ecosystems remains scarce. Here, we ask whether the invasion of the cane toad, a vertebrate invader that is toxic to many of Australia’s vertebrate predators, has induced ecological cascades in a semi-arid rangeland. We compared activity of a large predatory lizard, the sand-goanna, and abundances of smaller lizards preyed upon by goannas in areas of high toad activity near toads’ dry season refuges and areas of low toad activity distant from toads’ dry season refuges. Consistent with the hypothesis that toad invasion has led to declines of native predators susceptible to poisoning, goanna activity was lower in areas of high toad activity. Consistent with the hypothesis that toad-induced goanna decline lead to increases in abundance the prey of goannas, smaller lizards were more abundant in areas of high toad activity. Structural equation modelling showed a positive correlation between goanna activity and distance from dry season refuge habitats used by toads. The abundances of small lizards was correlated negatively with goanna activity and distance from dry season refuges of toads. Our findings provide support for the notion that invasions by terrestrial vertebrates can trigger ecological cascades.  相似文献   

9.
The cane toad is an invasive pest that is rapidly colonising northern Australia. The cane toad parotoid gland secretes cardiotoxic steroids (bufadienolides) that are poisoning native predator species. This study reveals bufadienolide diversity within the secretions of Australian cane toads is different to cane toads from overseas, being far more structurally diverse than previously assumed. It is proposed that this variation is mediated by in situ bacterial biotransformation.  相似文献   

10.
Although interest in the ecological impacts of invasive species has largely focused on negative effects, some native taxa may benefit from invader arrival. In tropical Australia, invasive cane toads (Bufo marinus) have fatally poisoned many native predators (e.g., marsupials, crocodiles, lizards) that attempt to ingest the toxic anurans, but birds appear to be more resistant to toad toxins. We quantified offtake of dead (road-killed) cane toads by raptors (black kites (Milvus migrans) and whistling kites (Haliastur sphenurus)) at a site near Darwin, in the Australian wet-dry tropics. Raptors readily took dead toads, especially small ones, although native frogs were preferred to toads if available. More carcasses were removed in the dry season than the wet season, perhaps reflecting seasonal availability of alternative prey. Raptors appeared to recognize and avoid bufotoxins, and typically removed and consumed only the toads’ tongues (thereby minimizing toxin uptake). The invasion of cane toads thus constitutes a novel prey type for scavenging raptors, rather than (as is the case for many other native predators) a threat to population viability.  相似文献   

11.
Translocated from their native range in the Americas in 1935, cane toads (Rhinella marina, Bufonidae) have now spread through much of tropical and subtropical Australia. The toad's invasion and impact have attracted detailed study. In this paper, I review information on ecological interactions between cane toads and Australian anurans. The phylogenetic relatedness and ecological similarity between frogs and toads creates opportunities for diverse interactions, ranging from predation to competition to parasite transfer, plus a host of indirect effects mediated via impacts of toads on other species, and by people's attempts to control toads. The most clear‐cut effect of toads on frogs is a positive one: reducing predator pressure by fatally poisoning anuran‐eating varanid lizards. However, toads also have a wide range of other effects on frogs, some positive (e.g. taking up parasites that would otherwise infect native frogs) and others negative (e.g. eating frogs, poisoning frogs, competing with tadpoles). Although information on such mechanisms predicts intense interactions between toads and frogs, field surveys show that cane toad invasion has negligible overall impacts on frog abundance. That counter‐intuitive result is because of a broad balancing of negative and positive impacts, coupled with stochastic (weather‐induced) fluctuations in anuran abundance that overwhelm any impacts of toads. Also, the impacts of toads on frogs differ among frog species and life‐history stages, and depend upon local environmental conditions. The impacts of native frogs on cane toads have attracted much less study, but may well be important: frogs may impose biotic resistance to cane toad colonization, especially via competition in the larval phase. Overall, the interactions between native frogs and invasive toads illustrate the diverse ways in which an invader's arrival can perturb the native fauna by both direct and indirect mechanisms, and by which the native species can curtail an invader's success. These studies also offer a cautionary tale about the difficulty of predicting the impact of an invasive species, even with a clear understanding of mechanisms of direct interaction.  相似文献   

12.
The invasion of cane toads (Bufo marinus) across tropical Australia has fatally poisoned many native predators; the most frequent victims may be tadpoles of native frogs, which die when they consume the toxic eggs of the toads. Field studies have documented high and species‐specific mortality of tadpoles following toad spawning. To clarify the determinants of tadpole vulnerability, we conducted 1593 laboratory trials in which single tadpoles were exposed to 10 toad eggs, either with or without an alternative food source (lettuce). At least some tadpoles within all 15 species tested consumed toad eggs. Interspecific variance in survival rates (from 0 to >70%) was driven by feeding responses not by physiological tolerance to toxins: almost all native tadpoles that consumed eggs died rapidly. Tadpole mortality was decreased by the presence of an alternative food source in four species, increased in two species, and not affected in seven species. In three of four taxa where we tested both small (early‐stage) and large (late‐stage) tadpoles, both mean survival rates and the effects of alternative food on survival shifted with tadpole body size. Trials with one species (Limnodynastes convexiusculus) showed no significant inter‐clutch variation in feeding responses or tolerance to toxins. Overall, our data show that cane toad eggs are highly toxic to native anuran tadpoles, but that whether or not a tadpole is killed by encountering toad eggs depends upon a complex interaction between the native anuran's species, its body size, and whether or not alternative food was present. In nature, larval vulnerability also depends upon the seasonal timing and location of spawning events, and habitat selection and foraging patterns of the tadpoles. Our results highlight the complexity of vulnerability determinants, and identify ecological factors (rather than physiology or feeding behaviour) as the primary determinants of cane toad impact on native tadpoles.  相似文献   

13.
An understanding of which native species are severely impacted by an anthropogenic change (such as the arrival of an invasive species) and which are not is critical to prioritizing conservation efforts. However, it is difficult to detect such impacts if the native taxa exhibit strong stochastic variations in abundance; a ‘natural’ population decline might be wrongly interpreted as an impact of the invader. Frillneck lizards (Chlamydosaurus kingii) are large iconic Australian agamids, and have been reported to decline following the invasion of toxic cane toads. We monitored three populations of the species in the savanna woodland of tropical Australia over a 7‐year period bracketing toad arrival. One population crashed, one remained stable and one increased. Hence, studies on any single population might have inferred that cane toads have negative, negligible or positive effects on frillneck lizards. With the benefit of spatial replication, and in combination with observations of prey choice by captive lizards, our data suggest that invasive cane toads have had little or no effect on frillneck abundance.  相似文献   

14.
If invasive species use chemical weapons to suppress the viability of conspecifics, we may be able to exploit those species-specific chemical cues for selective control of the invader. Cane toads (Rhinella marina) are spreading through tropical Australia, with negative effects on native species. The tadpoles of cane toads eliminate intraspecific competitors by locating and consuming newly laid eggs. Our laboratory trials show that tadpoles find those eggs by searching for the powerful bufadienolide toxins (especially, bufogenins) that toads use to deter predators. Using those toxins as bait, funnel-traps placed in natural waterbodies achieved near-complete eradication of cane toad tadpoles with minimal collateral damage (because most native (non-target) species are repelled by the toads' toxins). More generally, communication systems that have evolved for intraspecific conflict provide novel opportunities for invasive-species control.  相似文献   

15.
Commonly, invaders have different impacts in different places. The spread of cane toads (Rhinella marina: Bufonidae) has been devastating for native fauna in tropical Australia, but the toads' impact remains unstudied in temperate‐zone Australia. We surveyed habitat characteristics and fauna in campgrounds along the central eastern coast of Australia, in eight sites that have been colonized by cane toads and another eight that have not. The presence of cane toads was associated with lower faunal abundance and species richness, and a difference in species composition. Populations of three species of large lizards (land mullets Bellatorias major, eastern water dragons Intellagama lesueurii, and lace monitors Varanus varius) and a snake (red‐bellied blacksnake Pseudechis porphyriacus) were lower (by 84 to 100%) in areas with toads. The scarcity of scavenging lace monitors in toad‐invaded areas translated into a 52% decrease in rates of carrion removal (based on camera traps at bait stations) and an increase (by 61%) in numbers of brush turkeys (Alectura lathami). The invasion of cane toads through temperate‐zone Australia appears to have reduced populations of at least four anurophagous predators, facilitated other taxa, and decreased rates of scavenging. Our data identify a paradox: The impacts of cane toads are at least as devastating in southern Australia as in the tropics, yet we know far more about toad invasion in the sparsely populated wilderness areas of tropical Australia than in the densely populated southeastern seaboard.  相似文献   

16.
Rapid environmental change due to human activities has increased rates of extinction, but some species may be able to adapt rapidly enough to deal with such changes. Our studies of feeding behaviour and physiological resistance to toxins reveal surprisingly rapid adaptive responses in Australian black snakes (Pseudechis porphyriacus) following the invasion of a lethally toxic prey item, the cane toad (Bufo marinus). Snakes from toad-exposed localities showed increased resistance to toad toxin and a decreased preference for toads as prey. Separate laboratory experiments suggest that these changes are not attributable to learning (we were unable to teach naive snakes to avoid toxic prey) or to acquired resistance (repeated sub-lethal doses did not enhance resistance). These results strongly suggest that black snake behaviour and physiology have evolved in response to the presence of toads, and have done so rapidly. Toads were brought to Australia in 1935, so these evolved responses have occurred in fewer than 23 snake generations.  相似文献   

17.
The arrival of a toxic invasive species may impose selection on local predators to avoid consuming it. Feeding responses may be modified via evolutionary changes to behaviour, or via phenotypic plasticity (e.g. learning, taste aversion). The recent arrival of cane toads (Bufo marinus) in the Northern Territory of Australia induced rapid aversion learning in a predatory marsupial (the common planigale, Planigale maculata). Here, we examine the responses of planigales to cane toads in north‐eastern Queensland, where they have been sympatric for over 60 years, to investigate whether planigale responses to cane toads have been modified by long‐term exposure. Responses to toads were broadly similar to those documented for toad‐naïve predators. Most Queensland planigales seized (21 of 22) and partially consumed (11 of 22) the first toad they were offered, but were likely to ignore toads in subsequent trials. However, unlike their toad‐naïve conspecifics from the Northern Territory, the Queensland planigales all survived ingestion of toad tissue without overt ill effects and continued to attack toads in a substantial proportion of subsequent trials. Our data suggest that (i) learning by these small predators is sufficiently rapid and effective that selection on behaviour has been weak; and (ii) physiological tolerance to toad toxins may be higher in planigales after 60 years (approximately 60 generations) of exposure to this toxic prey.  相似文献   

18.
One important impact of invasive species may be to modify the behaviour of native taxa. For example, the invasion of highly toxic cane toads (Bufo marinus) kills many anurophagous native predators, but other predators learn to recognize and avoid the toxic invader. We exposed native fish (northern trout gudgeons, Mogurnda mogurnda) and Dahl's aquatic frogs (Litoria dahlii) to cane toad tadpoles, then monitored the predator's responses during subsequent trials. Both the frogs and fish initially attacked toad tadpoles, but rapidly learned not to do so. Fish and adult frogs retained their aversion for at least a week, whereas recently metamorphosed frogs did not. Clearly, the spread of cane toads through tropical Australia can modify feeding responses of native aquatic predators. For predators capable of rapid avoidance learning, the primary impact of cane toads may be on foraging behaviour rather than mortality.  相似文献   

19.
Invasive vertebrates are frequently reported to have catastrophic effects on the populations of species which they directly impact. It follows then, that if invaders exert strong suppressive effects on some species then other species will indirectly benefit due to ecological release from interactions with directly impacted species. However, evidence that invasive vertebrates trigger such trophic cascades and alter community structure in terrestrial ecosystems remains rare. Here, we ask how the cane toad, a vertebrate invader that is toxic to many of Australia's vertebrate predators, influences lizard assemblages in a semi‐arid rangeland. In our study area, the density of cane toads is influenced by the availability of water accessible to toads. We compared an index of the abundance of sand goannas, a large predatory lizard that is susceptible to poisoning by cane toads and the abundances of four lizard families preyed upon by goannas (skinks, pygopods, agamid lizards and geckos) in areas where cane toads were common or rare. Consistent with the idea that suppression of sand goannas by cane toads initiates a trophic cascade, goanna activity was lower and small lizards were more abundant where toads were common. The hypothesis that suppression of sand goannas by cane toads triggers a trophic cascade was further supported by our findings that small terrestrial lizards that are frequently preyed upon by goannas were more affected by toad abundance than arboreal geckos, which are rarely consumed by goannas. Furthermore, the abundance of at least one genus of terrestrial skinks benefitted from allogenic ecosystem engineering by goannas where toads were rare. Overall, our study provides evidence that the invasion of ecosystems by non‐native species can have important effects on the structure and integrity of native communities extending beyond their often most obvious and frequently documented direct ecological effects.  相似文献   

20.
The primary ecological impact of invasive cane toads (Rhinella marina) in Australia is mediated by their powerful toxins, which are fatal to many native species. Toads use roads as invasion corridors and feeding sites, resulting in frequent road-kills. The flattened, desiccated toad carcasses remain highly toxic despite being heated daily to >40°C for many months during the tropical dry-season. In controlled laboratory experiments, native tadpoles (Cyclorana australis, Litoria rothii), fishes (Mogurnda mogurnda) and leeches (Family Erpobdellidae) died rapidly when we added fragments of sun-dried toad to their water, even if the native animals had no physical access to the carcass. Given the opportunity, native tadpoles and fishes strongly avoided the vicinity of dried toad fragments. Hence, long-dead toads may contaminate roadside ponds formed by early wet-season rains and induce avoidance and/or mortality of native anuran larvae, fishes and invertebrates. Our studies show that the toxicity of this invasive species does not end with the toad’s death, and that methods for disposing of toad carcasses (e.g., after culling operations) need to recognize the persistent danger posed by those carcasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号