首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2–3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon–louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon–louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.  相似文献   

2.
Host-parasite systems provide powerful opportunities for the study of spatial and stochastic effects in ecology; this has been particularly so for directly transmitted microparasites. Here, we construct a fully stochastic model of the population dynamics of a macroparasite system: trichostrongylid gastrointestinal nematode parasites of farmed ruminants. The model subsumes two implicit spatial effects: the host population size (the spatial extent of the interaction between hosts) and spatial heterogeneity ('clumping') in the infection process. This enables us to investigate the roles of several different processes in generating aggregated parasite distributions. The necessity for female worms to find a mate in order to reproduce leads to an Allee effect, which interacts nonlinearly with the stochastic population dynamics and leads to the counter-intuitive result that, when rare, epidemics can be more likely and more severe in small host populations. Clumping in the infection process reduces the strength of this Allee effect, but can hamper the spread of an epidemic by making infection events too rare. Heterogeneity in the hosts' response to infection has to be included in the model to generate aggregation at the level observed empirically.  相似文献   

3.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

4.
Cleaning interactions have been described in a wide range of fish species and other taxa. We observed a novel cleaning behaviour during a study of the transmission dynamics of sea lice (Lepeophtheirus salmonis) between juvenile pink salmon (Oncorhynchus gorbuscha) and threespine sticklebacks (Gasterosteus aculeatus) in the Broughton Archipelago, British Columbia, Canada. Experiments showed that sticklebacks significantly reduced the number of sea lice on individual juvenile salmon. Adult female lice were preferentially consumed by sticklebacks, and gravid female lice also experienced egg string cropping. Overall, 76% of gravid female lice experienced either consumption, egg string cropping, or both by sticklebacks. This preference by sticklebacks for female parasites may stem from female lice being larger than males and the added nutritional value of egg strings on gravid females. Cleaning by sticklebacks can potentially have an impact on sea louse populations on wild juvenile salmon.  相似文献   

5.
Parasites seldom have predators but often fall victim to those of their hosts. How parasites respond to host predation can have important consequences for both hosts and parasites, though empirical investigations are rare. The exposure of wild juvenile salmon to sea lice (Lepeophtheirus salmonis) from salmon farms allowed us to study a novel ecological interaction: the response of sea lice to predation on their juvenile pink and chum salmon hosts by two salmonid predators-coho smolts and cut-throat trout. In approximately 70% of trials in which a predator consumed a parasitized prey, lice escaped predation by swimming or moving directly onto the predator. This trophic transmission is strongly male biased, probably because behaviour and morphology constrain female movement and transmission. These findings highlight the potential for sea lice to be transmitted up marine food webs in areas of intensive salmon aquaculture, with implications for louse population dynamics and predatory salmonid health.  相似文献   

6.
The objectives of the study were to see if escaped rainbow trout (Oncorhynchus mykiss) spread rapidly or not from fish farms, and to test whether the hydrological conditions in a fjord influence their vertical distribution and importance as vector for the salmon lice (Lepeophtheirus salmonis). Fifty farmed rainbow trout were tagged with acoustic transmitters including depth sensors and released from two of 11 fish farms in the fjord system. In addition, unintentionally escaped rainbow trout were recaptured for analysis of salmon lice and stomach content. Dispersal out of the fjord system was limited. Most fish stayed in the vicinity of and moved between the fish farms but fed primarily on a variety of indigestible items. They moved in the warm relatively fresh surface layer from late spring until early autumn where the risk of being infested with salmon lice was low. They swam gradually deeper and became much more infested with salmon lice as the surface layers cooled and salinity and temperature gradients became less distinct over the course of the winter. The observed post-escapement behavior may challenge the control of the spread of diseases and parasites between neighboring farms and to wild fish, but also increases opportunities for recapture.  相似文献   

7.
Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.  相似文献   

8.
Classical theories of biological invasions predict constant rates of spread that can be estimated from measurable life history parameters, but such outcomes depend strongly on assumptions that are often unmet in nature. Subsequent advances have demonstrated how relaxing assumptions of these foundational models results in other spread patterns seen in nature, including invasions that accelerate through time, or that alternate among periods of expansion, retraction, and stasis of range boundaries. In this paper, we examine how periodic population fluctuations affect temporal patterns of range expansion by coupling empirical data on the gypsy moth invasion in North America with insights from a model incorporating population cycles, Allee effects, and stratified diffusion. In an analysis of field data, we found that gypsy moth spread exhibits pulses with a period of 6 yr, which field data and model simulations suggest is the result of a 6‐yr population cycle in established populations near the invasion front. Model simulations show that the development of periodic behavior in range expansion depends primarily on the period length of population cycles. The period length of invasion pulses corresponded to the population cycle length, and the regularity of invasion pulses tended to decline with increases in population cycle length. A key insight of this research is that dynamics of established populations, behind the invasion front, can have strong effects on spread. Our findings suggest that coordination between separate management programs targeting low‐density spreading and established outbreaking populations, respectively, could increase the efficacy of efforts to mitigate gypsy moth impacts. Given the variety of species experiencing population fluctuations, Allee effects, and stratified diffusion, insights from this study are potentially important to understanding how the range boundaries of many species change.  相似文献   

9.
Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches are needed that identify the circumstances leading to an Allee effect before such a scenario occurs. We present a predictive approach of Allee effects for polar bears where low population densities, an unpredictable habitat and harvest-depleted male populations result in infrequent mating encounters. We develop a mechanistic model for the polar bear mating system that predicts the proportion of fertilized females at the end of the mating season given population density and operational sex ratio. The model is parametrized using pairing data from Lancaster Sound, Canada, and describes the observed pairing dynamics well. Female mating success is shown to be a nonlinear function of the operational sex ratio, so that a sudden and rapid reproductive collapse could occur if males are severely depleted. The operational sex ratio where an Allee effect is expected is dependent on population density. We focus on the prediction of Allee effects in polar bears but our approach is also applicable to other species.  相似文献   

10.
Understanding the factors that influence successful colonization can help inform ecological theory and aid in the management of invasive species. When founder populations are small, individual fitness may be negatively impacted by component Allee effects through positive density dependence (e.g., mate limitation). Reproductive and survival mechanisms that suffer due to a shortage of conspecifics may scale up to be manifest in a decreased per-capita population growth rate (i.e., a demographic Allee effect). Mean-field population level models are limited in representing how component Allee effects scale up to demographic Allee effects when heterogeneous spatial structure influences conspecific availability. Thus, such models may not adequately characterize the probability of establishment. In order to better assess how individual level processes influence population establishment and spread, we developed a spatially explicit individual-based stochastic simulation of a small founder population. We found that increased aggregation can affect individual fitness and subsequently impact population growth; however, relatively slow dispersal—in addition to initial spatial structure—is required for establishment, ultimately creating a tradeoff between probability of initial establishment and rate of subsequent spread. Since this result is sensitive to the scaling up of component Allee effects, details of individual dispersal and interaction kernels are key factors influencing population level processes. Overall, we demonstrate the importance of considering both spatial structure and individual level traits in assessing the consequences of Allee effects in biological invasions.  相似文献   

11.
Combined impacts of Allee effects and parasitism   总被引:3,自引:0,他引:3  
Anne Deredec  Franck Courchamp 《Oikos》2006,112(3):667-679
Despite their individual importance for population dynamics and conservation biology, the combined impacts of Allee effects and parasitism have received little attention. We built a mathematical model to compare the dynamics of populations with or without Allee effects when infected by microparasites. We show that the influence of an Allee effect takes the form of a tradeoff. The presence of an Allee effect in host populations may protect them, by reducing the range of population sizes that allow parasite spread. Yet if infection spreads, the Allee effect weakens host populations by reducing their size and by widening the range of parasite species that lead them to extinction. These results have important implications for predicting the survival of threatened populations or the success of reintroductions, and may help define size ranges within which given populations should be maintained to prevent both epidemics and Allee effects driven extinctions.  相似文献   

12.
A surging interest in the evolution of consistent trait correlations has inspired research on pigment patterns as a correlate of behavioural syndromes, or "animal personalities". Associations between pigmentation, physiology and health status are less investigated as potentially conserved trait clusters. In the current study, lice counts performed on farmed Atlantic salmon Salmo salar naturally infected with ectoparasitic sea lice Lepeophtheirus salmonis showed that individual fish with high incidence of black melanin-based skin spots harboured fewer female sea lice carrying egg sacs, compared to less pigmented fish. There was no significant association between pigmentation and lice at other developmental stages, suggesting that host factors associated with melanin-based pigmentation may modify ectoparasite development to a larger degree than settlement. In a subsequent laboratory experiment a strong negative correlation between skin spots and post-stress cortisol levels was revealed, with less pigmented individuals showing a more pronounced cortisol response to acute stress. The observation that lice prevalence was strongly increased on a fraction of sexually mature male salmon which occurred among the farmed fish further supports a role for steroid hormones as mediators of reduced parasite resistance. The data presented here propose steroid hormones as a proximate cause for the association between melanin-based pigmentation and parasites. Possible fundamental and applied implications are discussed.  相似文献   

13.
The search for effective and long-term solutions to the problems caused by salmon lice Lepeophtheirus salmonis (Kr?yer, 1837) has increasingly included biological/ecological mechanisms to combat infestation. One aspect of this work focuses on the host-associated stimuli that parasites use to locate and discriminate a compatible host. In this study we used electrophysiological recordings made directly from the antennule of adult lice to investigate the chemosensitivity of L. salmonis to putative chemical attractants from fish flesh, prepared by soaking whole fish tissue in seawater. There was a clear physiological response to whole fish extract (WFX) with threshold sensitivity at a dilution of 10 . When WFX was size fractionated, L. salmonis showed the greatest responses to the water-soluble fractions containing compounds between 1 and 10 kDa. The results suggest that the low molecular weight, water-soluble compounds found in salmon flesh may be important in salmon lice host choice.  相似文献   

14.
Allee effects are an important dynamic phenomenon believed to be manifested in several population processes, notably extinction and invasion. Though widely cited in these contexts, the evidence for their strength and prevalence has not been critically evaluated. We review results from 91 studies on Allee effects in natural animal populations. We focus on empirical signatures that are used or might be used to detect Allee effects, the types of data in which Allee effects are evident, the empirical support for the occurrence of critical densities in natural populations, and differences among taxa both in the presence of Allee effects and primary causal mechanisms. We find that conclusive examples are known from Mollusca, Arthropoda, and Chordata, including three classes of vertebrates, and are most commonly documented to result from mate limitation in invertebrates and from predator–prey interactions in vertebrates. More than half of studies failed to distinguish component and demographic Allee effects in data, although the distinction is crucial to most of the population-level dynamic implications associated with Allee effects (e.g., the existence of an unstable critical density associated with strong Allee effects). Thus, although we find conclusive evidence for Allee effects due to a variety of mechanisms in natural populations of 59 animal species, we also find that existing data addressing the strength and commonness of Allee effects across species and populations is limited; evidence for a critical density for most populations is lacking. We suggest that current studies, mainly observational in nature, should be supplemented by population-scale experiments and approaches connecting component and demographic effects. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Allee effects in biological invasions   总被引:8,自引:0,他引:8  
Understanding the dynamics of small populations is obviously important for declining or rare species but is also particularly important for invading species. The Allee effect, where fitness is reduced when conspecific density is low, can dramatically affect the dynamics of biological invasions. Here, we summarize the literature of Allee effects in biological invasions, revealing an extensive theory of the consequences of the Allee effect in invading species and some empirical support for the theory. Allee effects cause longer lag times, slower spread and decreased establishment likelihood of invasive species. Expected spatial ranges, distributions and patterns of species may be altered when an Allee effect is present. We examine how the theory can and has been used to detect Allee effects in invasive species and we discuss how the presence of an Allee effect and its successful or unsuccessful detection may affect management of invasives. The Allee effect has been shown to change optimal control decisions, costs of control and the estimation of the risk posed by potentially invasive species. Numerous ways in which the Allee effect can influence the efficacy of biological control are discussed.  相似文献   

16.
Fishes farmed in sea pens may become infested by parasites from wild fishes and in turn become point sources for parasites. Sea lice, copepods of the family Caligidae, are the best-studied example of this risk. Sea lice are the most significant parasitic pathogen in salmon farming in Europe and the Americas, are estimated to cost the world industry €300 million a year and may also be pathogenic to wild fishes under natural conditions.Epizootics, characteristically dominated by juvenile (copepodite and chalimus) stages, have repeatedly occurred on juvenile wild salmonids in areas where farms have sea lice infestations, but have not been recorded elsewhere. This paper synthesizes the literature, including modelling studies, to provide an understanding of how one species, the salmon louse, Lepeophtheirus salmonis, can infest wild salmonids from farm sources. Three-dimensional hydrographic models predicted the distribution of the planktonic salmon lice larvae best when they accounted for wind-driven surface currents and larval behaviour. Caligus species can also cause problems on farms and transfer from farms to wild fishes, and this genus is cosmopolitan. Sea lice thus threaten finfish farming worldwide, but with the possible exception of L. salmonis, their host relationships and transmission adaptations are unknown. The increasing evidence that lice from farms can be a significant cause of mortality on nearby wild fish populations provides an additional challenge to controlling lice on the farms and also raises conservation, economic and political issues about how to balance aquaculture and fisheries resource management.  相似文献   

17.
Atlantic salmon in Maine were once abundant but have become depleted, and are listed as endangered under the federal Endangered Species Act. Historically, salmon numbers in Maine may have been as high as 100 000 adults, but habitat loss, pollution and overfishing have contributed to the decline of the species. In 2000, only 110 adults returned to spawn in Maine rivers. Maine produces c. 15 000 metric tons/year of aquacultured Atlantic salmon from a total of nearly 600 coastal net pens. Escapees from these pens may interact with the wild salmon. The dynamics of salmon populations under such conditions are poorly understood. In order to illuminate the role aquaculture may play in such a system, we have developed a model for simulating population trajectories for both wild salmon and competing populations derived from aquaculture escapes. The model simulates a small population of wild salmon based in a stream/estuary system, into which an aquaculture facility is losing fish to escapes. Biological parameters in the model were estimated as much as possible from data in the USFWS report on Maine salmon. We used the model to investigate the consequences of a variety of ecological interactions between the wild and cultured fish including competitive, genetic and disease effects. Initial results indicate that many of these effects allow the aquaculture‐derived population to supplant the wild fish, but that wild populations may still persist under some conditions.  相似文献   

18.
Atlantic salmon in Maine were once abundant but have become depleted, and are listed as endangered under the federal Endangered Species Act. Historically, salmon numbers in Maine may have been as high as 100 000 adults, but habitat loss, pollution and overfishing have contributed to the decline of the species. In 2000, only 110 adults returned to spawn in Maine rivers. Maine produces c. 15 000 metric tons/year of aquacultured Atlantic salmon from a total of nearly 600 coastal net pens. Escapees from these pens may interact with the wild salmon. The dynamics of salmon populations under such conditions are poorly understood. In order to illuminate the role aquaculture may play in such a system, we have developed a model for simulating population trajectories for both wild salmon and competing populations derived from aquaculture escapes. The model simulates a small population of wild salmon based in a stream/estuary system, into which an aquaculture facility is losing fish to escapes. Biological parameters in the model were estimated as much as possible from data in the USFWS report on Maine salmon. We used the model to investigate the consequences of a variety of ecological interactions between the wild and cultured fish including competitive, genetic and disease effects. Initial results indicate that many of these effects allow the aquaculture‐derived population to supplant the wild fish, but that wild populations may still persist under some conditions.  相似文献   

19.
One of the main challenges in ecology is to determine the cause of population fluctuations. Both theoretical and empirical studies suggest that delayed density dependence instigates cyclic behavior in many populations; however, underlying mechanisms through which this occurs are often difficult to determine and may vary within species. In this paper, we consider single species population dynamics affected by the Allee effect coupled with discrete time delay. We use two different mathematical formulations of the Allee effect and analyze (both analytically and numerically) the role of time delay in different feedback mechanisms such as competition and cooperation. The bifurcation value of the delay (that results in the Hopf bifurcation) as a function of the strength of the Allee effect is obtained analytically. Interestingly, depending on the chosen delayed mechanism, even a large time delay may not necessarily lead to instability. We also show that, in case the time delay affects positive feedback (such as cooperation), the population dynamics can lead to self-organized formation of intermediate quasi-stationary states. Finally, we discuss ecological implications of our findings.  相似文献   

20.
Allee effects can play a critical role in slowing or preventing the establishment of low density founder populations of non-indigenous species. Similarly, the spread of established invaders into new habitats can be influenced by the degree to which small founder populations ahead of the invasion front are suppressed through Allee effects. We develop an approach to use empirical data on the gypsy moth, a non-indigenous invader in North America, to quantify the Allee threshold across geographical regions, and we report that the strength of the Allee effect is subject to spatial and temporal variability. Moreover, we present what is to our knowledge the first empirical evidence that geographical regions with higher Allee thresholds are associated with slower speeds of invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号