首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Previous experiments indicate that the apical membrane of the frog retinal pigment epithelium contains electrogenic NaK pumps. In the pressent experiments net potassium and rubidium transport across the epithelium was measured as a function of extracellular potassium (rubidium) concentration, [K] o ([Rb] o ). The net rate of retina-to-choroid42K(86Rb) transport increased monotonically as [K] o ([Rb] o ), increased from approximately 0.2 to 5mm on both sides of the tissue or on the apical (neural retinal) side of the tissue. No further increase was observed when [K] o ([Rb] o ) was elevated to 10mm. Net sodium transport was also stimulated by elevating [K] o . The net K transport was completely inhibited by 10–4 m ouabain in the solution bathing the apical membrane. Ouabain inhibited the unidirectional K flux in the direction of net flux but had not effect on the back-flux in the choroid-to-retina direction. The magnitude of the ouabain-inhibitable42K(86Rb) flux increased with [K] o ([Rb] o ). These results show that the apical membrane NaK pumps play an important role in the net active transport of potassium (rubidium) across the epithelium. The [K] o changes that modulate potassium transport coincide with the light-induced [K] o changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium.  相似文献   

2.
Summary Transepithelial electrogenic Na transport (INa) was investigated in the colon of the frog Xenopus laevis with electrophysiological methods in vitro. The short circuit current (Isc) of the voltage-clamped tissue was 24.2±1.8 A·cm-2 (n=10). About 60% of this current was generated by electrogenic Na transport. Removal of Ca2+ from the mucosal Ringer solution stimulated INa by about 120%. INa was not blockable by amiloride (0.1 mmol·l-1), a specific Na-channel blocker in epithelia, but a fully and reversible inhibition was achieved by mucosal application of 1 mmol·l-1 lanthanum (La3-). No Na-self-inhibition was found, because INa increased linearly with the mucosal Na concentration. A stimulation of INa by antidiuretic hormones was not possible. The analysis of fluctuations in the short circuit current (noise analysis) indicated that Na ions pass the apical cell membrane via a Ca-sensitive ion channel. The results clearly demonstrate that in the colon of Xenopus laevis Na ions are absorbed through Ca-sensitive apical ion channels. They differ considerably in their properties and regulation from the amiloride-sensitive Na channel which is typically found in the colon of vertebrates.Abbreviations G T transepithelial conductance - I sc short circuit current - I Na transepithelial Na-current - m mucosal - s serosal - PDS power density spectrum - f frequency - f c corner frequency of the Lorentzian component of the PDS - S(f) power density of the Lorentzian component of the PDS - So plateau value of the Lorentzian component of the PDS  相似文献   

3.
Summary Activation of protein kinase C has been shown to cause both stimulation and inhibition of transport processes in the brush-border membrane and renal tubule. This study was designed to examine the dose-response nature and time-dependent effect of 4 -phorbol-12-myristate-13-acetate (PMA) on the rates of bicarbonate absorption (J HCO3) and fluid absorption (J v) in the proximal convoluted tubule (PCT) of rat kidney. Bicarbonate flux was determined by total CO2 changes between the collected fluid and the original perfusate as analyzed by microcalorimetry. Luminal perfusion of PMA (10–10 10–5 M) within 10 min caused a significant increase ofJ HCO3 andJ v. A peaked curve of the dose response was observed with maximal effect at 10–8 M PMA on both bicarbonate and fluid reabsorption, which could be blocked completely by amiloride (10–3 m) and EIPA (10–5 M). On the other hand, with an increase of perfusion time beyond 15 min, PMA (10–8 and 10–6 M) could inhibitJ HCO3 andJ v. Amiloride (10–3 M) or EIPA (10–5 M) significantly inhibitsJ HCO3 andJ v, while there is no additive effect of PMA and amiloride or EIPA on PCT transport. An inactive phorbol-ester, 4-phorbol, that does not activate protein kinase C, had no effects onJ HCO3 andJ v. Capillary perfusion of PMA (10–8 M) significantly stimulate bothJ HCO3 andJ v; however, PMA did not affect glucose transport from either the luminal side or basolateral side of the PCT. These results indicate that activation of endogenous protein kinase C by PMA could either stimulate or inhibit both bicarbonate and fluid reabsorption in the PCT dependent on time and dose, and these effects are through the modulation of Na+/H exchange mechanism.  相似文献   

4.
Summary The use of an Ussing chamber with well-defined mixing characteristics coupled to a mass spectrometer permits the concurrent evaluation of transepithelial current and oxidative metabolism with improved temporal resolution. The time-course of the amiloride-sensitive currentI a and the rate of suprabasal CO2 productionJ CO2 sb were observed in 10 toad urinary bladders at short-circuit and after clamping at 100 mV, serosa positive. Following perturbation of (0100mV),I a declined sharply within 1/2 min, remained near constant 15 min, and then increased slightly.J CO2 sb declined more gradually, remained near constant at 4–7 min, and then declined further. Detailed analysis revealed an early quasi-steady state with near constancy ofJ CO2 sb starting at 2.9±1.1 (sd) min and lasting 4.7 ±1.8 (sd) min, followed by relaxation to a later steady state at about 15 min. During the early quasi-steady state,I a was also nearly constant. Considering that in steady statesI a/FJ Na a , the rate of transepithelial active Na transport, during the early quasi-steady state mean values ±se ofJ Na a ,J CO2 sb and (J Na a /J CO2 sb ) were, respectively, 29.9±1.7%, 59.4 ±3.2%, and 56.4±5.7% of values at short-circuit. Corresponding values during the late steady state were 41.4±6.0%, 38.2±6.1%, and 111.3±8.6%. Thus the flow ratioJ Na a /J CO2 sb was depressed significantly during the early quasi-steady state, but returned later to the original value. The results of measurements ofI a andJ CO2 sb in three hemibladders were qualitatively similar. In terms of a phenomenological black-box treatment the findings are consistent with earlier studies indicating incomplete coupling between transport and metabolism. Further studies will be required to clarify the molecular basis for these observations.  相似文献   

5.
Summary It was previously shown that ouabain decreases the potential difference across anin vitro preparation of bullfrog retinal pigment epithelium (RPE) when applied to the apical, but not the basal, membrane and that the net basal-to-apical Na+ transport is also inhibited by apical ouabain. This suggested the presence of a Na+–K+ pump on the apical membrane of the RPE. In the present experiments, intracellular recordings from RPE cells show that this pump is electrogenic and contributes approximately –10 mV to the apical membrane potential (V AP). Apical ouabain depolarizedV AP in two phases. The initial, fast phase was due to the removal of the direct, electrogenic component. In the first one minute of the response to ouabain,V AP depolarized at an average rate of 4.4±0.42 mV/min (n=10, mean ±sem), andV AP depolarized an average of 9.6±0.5 mV during the entire fast phase. A slow phase of membrane depolarization, due to ionic gradients running down across both membranes, continued for hours at a much slower rate, 0.4 mV/min. Using a simple diffusion model and K+-specific microelectrodes, it was possible to infer that the onset of the ouabain-induced depolarization coincided with the arrival of ouabain molecules at the apical membrane. This result must occur if ouabain affects an electrogenic pump. Other metabolic inhibitors, such as DNP and cold, also produced a fast depolarization of the apical membrane. For a decrease in temperature of 10°C, the average depolarization of the apical membrane was 7.1±3.4 mV (n=5) and the average decrease in transepithelial potential was 3.9±0.3 mV (n=10). These changes in potential were much larger than could be explained by the effect of temperature on anRT/F electrodiffusion factor. Cooling the tissue inhibited the same mechanism as ouabain, since prior exposure to ouabain greatly reduced the magnitude of the cold effect. Bathing the tissue in 0mm [K+] solution for 2 hr inhibited the electrogenic pump, and subsequent re-introduction of 2mm [K+] solution produced a rapid membrane hyperpolarization. We conclude that the electrogenic nature of this pump is important to retinal function, since its contribution to the apical membrane potential is likely to affect the transport of ions, metabolites, and fluid across the RPE.  相似文献   

6.
Summary It has been reported that PCMBS (p-chloromercuribenzene sulfonate) blocks the water permeability of red cells and of the tubular kidney membranes. In this study we compare the effects of this mercurial compound on the permeability of water and other small solutes in the frog urinary bladder.We observed that: (i) 5mm PCMBS applied at pH 5.0 to the mucosal side inhibited the net and unidirectional water fluxes induced by oxytocin without changing the P f/P d ratio. (ii) The oxytocin-induced urea and Na+ influxes were also inhibited by PCMBS. (iii) The unidirectional Cl movement was first reduced and then increased during the course of PCMBS treatment. (iv) The short-circuit measured at low mucosal Na+ concentration (10mm), diminished continuously, whereas the transepithelial resistance first increased and then diminished. (v) Mannitol, raffinose, -methyl-glucose, antipyrine, caffeine and Rb+ movements were not changed significantly during the first 26 min of the water permeability inhibition. In conclusion: (i) The ADH-sensitive water, urea and Na+ transport systems were inhibited by PCMBS, (ii) PCMBS did not induce a nonspecific and general effect on the permeability of the membrane during the development of the water permeability inhibition, and (iii) in terms of water channels, the inhibition of water transport with the maintenance of a highP f/P d ratio suggests that PCMBS closes the water channels in an all or none manner, reducing their operative number in the apical border of frog bladder.  相似文献   

7.
Summary Bioelectrical parameters and unidirectional sodium and chloride fluxes were measured under voltageclamp conditions in groups of lizards submitted to single or chronic aldosterone treatment. Both acute (AT) and chronic (CT) treatment induced significant increases in the short-circuit current (I sc), as well as in the mucosa-to-serosa (J m-s Na ) and net sodium flux (J net Na ). In AT tissues, aldosterone did not change net chloride flux (J net Cl ) but did so in CT tissues. Amiloride reduced the aldosterone-increased I sc in AT and CT tissues, inhibited J net Na in AT tissues and abolished it in CT colons. J net Cl was also reduced by the diuretic in the group of AT colons, whereas no changes were observed in the CT tissues. Addition of luminal DIDS reduced Na+ absorption and totally inhibited Cl- absorption in the AT tissues, but did not change I sc. However, in CT tissues neither Na+ nor Cl- transport were affected by DIDS. A good relationship between I sc and J m-s Na was apparent after DIDS treatment in AT tissues. In this group, simultaneous addition of DIDS and amiloride totally abolished J net Na and reduced I sc to untreated control values. Addition of serosal ouabain abolished I sc and Na+ absorption in AT and CT colons, but Cl- absorption was only altered in AT tissues. These results support the hypothesis that aldosterone induces an electrogenic, amiloride-sensitive sodium absorption, and in a dose-dependent fashion suppresses electroneutral NaCl absorption in the lizard colon.Abbreviations AT acutely treated - CT chronically treated animals - DIDS 4-4-diisothiocyanatostibene-2-2-disulfonic acid - DMSO dimethylsulphoxide - G t tissue conductance - I sc short circuit current - PD transepithelial potential difference - SITS 4-acetamido-4-isothiocyanatostilbene-2-2-disulfonic acid - UC untreated controls Preliminary results of this paper were presented at the X th meeting of the European Intestinal Transport Group (EITG), Askov Hojskole, Denmark, 16–19 September 1990  相似文献   

8.
We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l–1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm–2·h–1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l–1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l–1 La3+ and 1.0 mmol·l–1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l–1)+0.1 mmol·l–1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 mol·l–1, serosal side), ionomycin (1.0 mol·l–1, serosal side) and the calmodulin blocker trifluoperazine (50 mol·l–1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 mol·l–1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.Abbreviations DASPEI 2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide - db-cAMP dibutyryl-cyclic adenosine monophosphate - FW fresh water - G t transepithelial conductance - I sc short-circuit current - IBMX 3-isobutyl-1-methylxanthine - SW sea water - TFP trifluoperazine - V t transepithelial potential  相似文献   

9.
Summary Intestinal nutrient transport in yearling coho salmon was characterized and adaptive changes in nutrient transport were described in relation to development, starvation, and environmental salinity. Salmon intestine exhibits a small transepithelial potential difference (TEP: –1.4 to 2.0 mV, mucosa ground) and low resistance (41 to 181 ohms·cm2) that varied with the region along the intestine, with starvation, and with environmental salinity. Addition of glucose or proline to the mucosal side of intestine caused a rapid increase in short-circuit current. Isotopic mucosalto-serosal net fluxes of glucose and proline were achieved across salmon intestine in the absence of transepithelial chemical or electrical gradients. A sleeve technique for measuring proline influx (Karasov and Diamond 1983a) was validated for use in salmon intestine. Comparison of total proline influx in different intestinal regions showed the following order (from highest to lowest rates): pyloric caeca anterior intestine > posterior intestine. Total proline influx was highest in April during the parr-smolt transformation.The kinetics of Na-dependent proline influx were altered by starvation and seawater adaptation. Starved fish exhibited a lowerK t but similarJ max in anterior intestine compared with values in fed fish. The effect of seawater adaptation on the kinetics of proline influx varied with the timing of entry into seawater, with length of seawater residence, and with season. Growth-inhibited SW stunts showed a reducedJ max of proline influx compared with that of normal SW smolts.Abbreviations FW freshwater (-adapted) - SW seawater (-adapted) - TEP transepithelial potential difference - R transepithelial resistance - I sc short-circuit current - P a apparent passive permeability coefficient - J max maximal influx - K t half-saturation constant  相似文献   

10.
Summary The effect of addition of FeCl3 to the media bathing the isolated skin ofRana pipiens was studied by measuring short-circuit current, transepithelial potential, and resistance, and by determining the influx and efflux of sodium (J 13 Na andJ 31 Na , respectively) and the influx and efflux of chloride (J 13 Cl andJ 31 Cl , respectively) across the epithelium. With normal Ringer's solution on both sides of the skin, addition of 10–3 m FeCl3 to the external medium resulted in nearly complete inhibition of active Na transport (J 13 Na decreased from 1.30±0.14 to 0.10±0.04 eq/cm2 hr (N=8)) and in appearance of active chloride transport in outward direction due to an 80% increase inJ 31 Cl . Average (J 31 ClJ 13 Cl ) obtained from means of 8 skins in 6 consecutive control and last 3 experimental periods was –0.17±0.04 and 0.38±0.05 eq/cm2 hr, respectively. FeCl3 added to external medium also induced substantial net chloride movement in outward direction when external medium contained Na-free choline chloride Ringer's or low ionic strength solution. Under the latter condition net Na movement was virtually eliminated by external FeCl3. After addition of FeCl3 to serosal medium there was delayed inhibition ofJ 13 Na but no change in chloride fluxes. Immediate and profound changes in Na and Cl transport systems seen after external application of FeCl3 indicate charge effects of Fe3+ on surface of apical cell membranes, possibly close to or in ion channels.  相似文献   

11.
Summary The mechanism of Na+ transport in rabbit urinary bladder has been studied by microelectrode techniques. Of the three layers of epithelium, the apical layer contains virtually all the transepithelial resistance. There is radial cell-to-cell coupling within this layer, but there is no detectable transverse coupling between layers. Cell coupling is apparently interrupted by intracellular injection of depolarizing current. The cell interiors are electrically negative to the bathing solutions, but the apical membrane of the apical layer depolarizes with increasingI sc. Voltage scanning detects no current sinks at the cell junctions or elsewhere. The voltage-divider ratio, , (ratio of resistance of apical cell membrane,R a, to basolateral cell membrane,R b) decreases from 30 to 0.5 with increasingI sc, because of the transportrelated conductance pathway in the apical membrane. Changes in effective transepithelial capacitance withI sc are predicted and possibly observed. The transepithelial resistance,R t, has been resolved intoR a, Rb, and the junctional resistance,R j, by four different methods: cable analysis, resistance of uncoupled cells, measurements of pairs of (R t, ) values in the same bladder at different transport rates, and the relation betweenR t andI sc and between andI sc.R j proves to be effectively infinite (nominally 300 k F) and independent ofI sc, andR a decreases from 154 to 4 k F with increasingI sc. In the resulting model of Na+ transport in tight epithelia, the apical membrane contains an amiloride-inhibited and Ca++-inhibited conductance pathway for Na+ entry; the basolateral membrane contains a Na+–K+-activated ATPase that extrudes Na+; intracellular (Na+) may exert negative feedback on apical membrane conductance; and aldosterone acts to stimulate Na+ entry at the apical membrane via the amiloride-sensitive pathway.  相似文献   

12.
Summary Previous studies of rabbit descending colon have disagreed concerning potassium transport across this epithelium. Some authors reported active K+ secretion underin vitro short-circuited conditions, while others suggested that K+ transport occurs by passive diffusion through a highly potassium-selective paracellular route. For this reason, we re-examined potassium fluxes across the colon in the presence of specific and general metabolic inhibitors. In addition, electrochemical driving forces for potassium across the apical and basolateral membranes were measured using conventional and ion-sensitive microelectrodes. Under normal conditions a significant net K+ secretion was observed (J net K =–0.39±0.081 eq/cm2hr) with42K fluxes, usually reaching steady-state within approximately 50 min following isotope addition. In colons treated with serosal addition of 10–4 m ouabain,J sm K was lowered by nearly 70% andJ ms K was elevated by approximately 50%. Thus a small but significant net absorption was present (J net K =0.12±0.027 eq/cm2hr). Under control conditions, the net cellular electrochemical driving force for K+ was 17 mV, favoring K+ exit from the cell. Cell potential measurements indicated that potassium remained above equilibrium after ouabain, assuming that passive membrane permeabilities are not altered by this drug. Net K+ fluxes were abolished by low temperature.The results indicate that potassium transport by the colon may occur via transcellular mechanisms and is not solely restricted to a paracellular pathway. These findings are consistent with our previous electrical results which indicated a nonselective paracellular pathway. Thus potassium transport across the colon can be modeled as a paracellular shunt pathway in parallel with pump-leak systems on the apical and basolateral membranes.  相似文献   

13.
Tobacco plants (Nicotiana tabacum L.) transformed with an inverted cDNA encoding ribulose 5-phosphate kinase (phosphoribulokinase,PRK; EC 2.7.1.19) were employed to study the in vivo relationship between photosynthetic electron transport and the partitioning of electron transport products to major carbon metabolism sinks under conditions of elevated ATP concentrations and limited ribulose 1,5-bisphosphate (RuBP) regeneration. Simultaneous measurements of room temperature chlorophyll fluorescence and CO2 gas exchange were conducted on intact leaves. Under ambient CO2 concentrations and light intensities above those at which the plants were grown, transformants with only 5% of PRK activity showed down-regulation of PS II activity and electron transport in response to a decrease in net carbon assimilation when compared to wild-type. This was manifested as a decline in the efficiency of PS II electron transport (PS II), an increase in dissipation of excess absorbed light in the antennae of PS II and a decline in: total linear electron transport (J1), electron transport dedicated to carbon assimilation (JA) and electron transport allocated to photorespiration (JL). The transformants showed no alteration in the Rubisco specificity factor measured in vitro and calculated in vivo but had a relatively smaller ratio of RuBP oxygenation to carboxylation rates (vo/vc), due to a higher CO2 concentration at the carboxylation site (Cc). The relationship between PS II and CO 2was similar in transformants and wild-type under photorespiratory conditions demonstrating no change in the intrinsic relationship between PS II function and carbon assimilation, however, a novel result of this study is that this similar relationship occurred at different values of quantum flux, J1, JA, JL and vo/vc in the transformant. For both wild-type and transformants, an assessment was made of the possible presence of a third major sink for electron transport products, beside RuBP oxygenation and carboxylation, the data provided no evidence for such a sink.Abbreviations Cc CO2 concentration at the site of carboxylation - Ci intercellular CO2 concentration - gm mesophyll conductance to CO2 - J1 total linear electron flow - JA linear electron flow allocated to CO2 assimilation - Jc linear electron flow supporting carbon reduction and oxidation cycles - JL linear electron flow allocated to photorespiration (RuBP oxygenation and fixation of released photorespiratory CO2) - PRK phosphoribulokinase - qP, qN coefficients for photochemical and non-photochemical quenching of fluorescence respectively - Rubisco ribulose 1,5-bisphosphate carboxylase-oxygenase - S Rubisco specificity to CO2/O2 - vc, vo rates of RuBP carboxylation and RuBP oxygenation, respectively - CO 2 relative quantum yield of CO2 assimilation - C maximum CO 2 under non-photorespiratory conditions - exc the efficiency of excitation capture by open PS II centres - PS II relative quantum yield of PS II electron transport  相似文献   

14.
Summary The high transverse resistance of the isolated rabbit cornea (6–12 k·cm2) is associated with the corneal epithelium, a Cl-secreting tissue which is modulated by -adrenergic and serotonergic receptors. Three methods were employed to determine the resistances for the apical membrane, basolateral membrane, and paracellular conductive pathways in the epithelium. In the first method, the specific resistance of the apical membrane was selectively and reversibly changed. Epinephrine was used to increase apical Cl conductance and Ag+ was used to increase apical cation permeability. The second method utilized a direct measure of the spontaneous cellular ionic current. The third method obtained estimates of shunt resistance using transepithelial electrophysiological responses to changes in apical membrane resistance. The results of the first method were largely independent of the agent used. In addition, the three methods were in general agreement, and the ranges of mean values for apical membrane, basolateral membrane, and shunt resistances were 23–33, 3–4, and 12–16 k·cm2, respectively, for the normal cornea. The apical membrane was the major, physiologically-modulated barrier to ion permeation. The shunt resistance of the corneal epithelium was comparable to that found previously for other tight epithelia. Experiments using Ag+ in tissues that were bathed in Cl and HCO3-free solutions indicated that under resting conditions the apical membrane is anion-selective.  相似文献   

15.
Summary The preceding paper [30] shows that transepithelial ileal SO4 transport involves Na-dependent uptake across the ileal brush border, and Cl-dependent efflux across the serosal border. The present study examines more closely the serosal efflux process. Transepithelial mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) across rabbit ileal mucosa were determined under short-circuit conditions. SO4 was present at 0.22mm. In standard Cl, HCO3 Ringer's,J ms SO4 was 81.3±5.3 (1se) andJ ms SO4 was 2.5±0.2 nmol cm–2 hr–1 (n=20). Serosal addition of 4-acetamido-4-isothiocyanostilbene-22-disulfonate (SITS), 44-diisothiocyanostilbene-22-disulfonate (DIDS) or 1-anilino-8-naphthalene-sulfonate (ANS) inhibited SO4 transport, SITS being the most potent. Several other inhibitors of anion exchange in erythrocytes and other cells had no effect on ileal SO4 fluxes. In contrast to its effect on SO4 transport, SITS (500 m) did not detectably alter Cl transport.Replacement of all Cl, HCO3 and PO4 with gluconate reducedJ ms SO4 by 70% and increasedJ ms SO4 by 400%. A small but significantJ net SO4 remained.J ms SO4 could be increased by addition to the serosal side of Cl, Br, I, NO3 or SO4. The stimulatory effect of all these anions was saturable and SITS-inhibitable. The maximalJ ms SO4 in the presence of Cl was considerably higher than in the presence of SO4 (73.1 and 42.2 nmol. cm–2 hr–1, respectively;p<0.001). TheK 1/2 value for Cl was 7.4mm, 10-fold higher than that for SO4 (0.7mm). Omitting HCO3 and PO4 had no measurable effects on SO4 fluxes.This study shows that (i) SO4 crosses the serosal border of rabbit ileal mucosa by anion exchange; (ii) the exchange process is inhibited by SITS, DIDS and ANS, but not by several other inhibitors of anion exchange in other systems; (iii) SO4 may exchange for Cl, Br, I, NO3 and SO4 itself, but probably not for HCO3 or PO4; (iv) kinetics of the exchange system suggest there is a greater affinity for SO4 than for Cl, although the maximal rate of exchange is higher in the presence of Cl; and, finally (v) SITS has little or no effect on net Cl transport.  相似文献   

16.
Basolateral K+ channels and their regulation during aldosterone- and thyroxine-stimulated Na+ transport were studied in the lower intestinal epithelium (coprodeum) of embryonic chicken in vitro. Isolated tissues of the coprodeum were mounted in Ussing chambers and investigated under voltage-clamped conditions. Simultaneous stimulation with aldosterone (1 mol·l-1) and thyroxine (1 mol·l-1) raised short-circuit current after a 1- to 2-h latent period. Maximal values were reached after 6–7 h of hormonal treatment, at which time transepithelial Na+ absorption was more than tripled (77±11 A·cm-2) compared to control (24±8 A·cm-2). K+ currents across the basolateral membrane with the pore-forming antibiotic amphotericin B and application of a mucosal-to-serosal K+ gradient. This K+ current could be dose dependently depressed by the K+ channel blocker quinidine. Fluctuation analysis of the short-circuit current revealed a spontaneous and a blocker-induced Lorentzian noise component in the power density spectra. The Lorentzian corner frequencies increased linearly with the applied blocker concentration. This enabled the calculation of single K+ channel current and K+ channel density. Single K+ channel current was not affected by stimulation, whereas the number of quinidine-sensitive K+ channels in the basolateral membrane increased from 11 to 26·106·cm-2 in parallel to the hormonal stimulation transepithelial Na+ transport. This suggests that the basolateral membrane is a physiological target during synergistic aldosterone and thyroxine regulation of transepithelial Na+ transport for maintaining intracellular K+ homeostasis.Abbreviations f frequency - f c Lorentzian corner frequency - g K single K+ channel conductance - HEPES N-2-hydroxyethylpiperazin-N'-2-ethansulfonic acid - i K single K+ channel current - IAmpho amphotericin B induced K+ current - I sc short-circuit current - I K quinidine blockable K+ current - I max maximally blocked current by quinidine - IC 50 half-maximal blocker concentration - k on, k off on- and off-rate coefficients of reversible single channel block by quinidine - M K number of conducting K+ channels - [Q] quinidine concentration - R t transepithelial resistance - S spectral density - S o Lorentzian plateau - TBM cells toad urinary bladder cell line Present address: University of California at Berkeley, Dept. of Molecular and Cell Biology Berkeley, CA 94720, USA  相似文献   

17.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

18.
Summary Recently, antibiotics have enjoyed widespread usage as tools in studies of epithelial transport. In the present study we assess the usefulness of the pore-forming antibiotic gramicidin D as a means for probing the electrical properties of the tight epithelium rabbit urinary bladder. Addition of 50 M gramicidin to the mucosal bath (either a NaCl or KCl Ringer's solution) led to a large irreversible increase in the transepithelial conductance (G T ) within 800 sec.G T increased by approximately 1200% and 500% in KCl and NaCl Ringer's solutions, respectively. Microelectrode measurements of the resistance ration (the ration of apical membrane resitance to basolateral membrane resistance) showed that apical membrane resistance is dereased by the drug. Measurements of the basolateral membrane resistance (R bl ) and tight junctional resistance (R j ) using a new and independent method (based on the perturbation of basolateral membrane electrogenic Na+ pump) demonstrated thatR bl andR j were unaffected, suggesting that the effects of gramicidin are restricted to the apical membrane for periods of at least 2 hours after drug addition. The selectivity of the gramicidin-induced permeability in the apical membrane was calculated from measurements of the apical membrane potential after ion substitutions using a modified version of the constant field equation. The selectivity sequence for cations was Cs+>K+>Na+>Li+>choline. Unlike the commonly used polyene antibiotics nystatin and amphotericin B, gramicidin did not induce a significant Cl permeability. In addition, the dose-response curve had a slope of 1. A method is described for calculating membrane resistances directly from transepithelial measurements under some conditions of gramicidin use, without requiring the use of microlectrode measurements.  相似文献   

19.
We have measured fluid secretion rate in Rhodnius prolixus upper Malpighian tubules (UMT) stimulated to secrete with 5-OH-tryptamine. We used double perfusions in order to have access separately to the basolateral and to the apical cell membranes. Thirteen pharmacological agents were applied: ouabain, Bafilomycin A1, furosemide, bumetanide, DIOA, Probenecid, SITS, acetazolamide, amiloride, DPC, BaCl2, pCMBS and DTT. These agents are known to block different ion transport functions, namely ATPases, co- and/or counter-transporters and ion and water channels. The basic assumption is that water movement changes reflect changes in ion transport mechanisms, which we localize as follows: (i) At the basolateral cell membrane, fundamental are a Na+-K+-2Cl cotransporter and a Cl-HCO3 exchanger; of intermediate importance are the Na+-K+-ATPase, Cl channels and Rp-MIP water channels; K+ channels play a lesser role: (ii) At the apical cell membrane, most important are a K+-Cl cotransport that is being located for the first time, a V-H+-ATPase; and a Na+-H+ exchanger; a urate-anion exchanger and K+ channels are less important, while Cl channels are not important at all. A tentative model for the function of the UMT cell is presented.Symbols and abbreviations:ACTZ, acetazolamide; cAMP, cyclic adenosine-mono-phosphate; DIOA, [(dihydroindenyl)oxy] alkanoic acid; DPC, diphenylamine-2-carboxylate; DTT, dithiothreitol; 5-HT, 5-hydroxy-tryptamine; IR, Insects Ringer; Jv, secretion rate [nl/cm2.s]; pCMBS, parachloro-mercuri-benzene-sulphonate; Rp-MIP, Rhodnius prolixus water channels; SITS, 4-acetamido-4-isothiocyanatostilbene -2,2-disulfonic Acid; UMT, upper malpighian tubules.  相似文献   

20.
Thoracic, abdominal, and pelvic fragments of ventral skin of Rana catesbeiana were analysed regarding the effect of oxytocin on: (1) transepithelial water transport; (2) short-circuit current; (3) skin conductance and electrical potential difference; (4) Na+ conductance and electrical potential difference; (4) Na+ conductance, the electromotive force of Na+ transport mechanism, and shunt conductance; (5) short-circuit current responses to fast Na+ by K+ replacement in the outer compartment, and (6) epithelial microstructure. Unstimulated water and Na+ permeabilities were low along the ventral skin. Hydrosmotic and natriferic responses to oxytocin increased from thorax to pelvis. Unstimulated Na+ conductance was greater in pelvis than in abdomen, the other electrical parameters being essentially similar in both skin fragments. Contribution of shunt conductance to total skin conductance was higher in abdominal than in pelvic skin. Oxytocin-induced increases of total skin conductance, Na+ conductance, and shunt conductance in pelvis were significantly larger than in abdomen. An oscillatory behaviour of the short-circuit current was observed only in oxytocin-treated pelvic skins. Decrease of epithelial thickness and increase of mitochondria-rich cell number were observed from thorax to pelvis. Oxytocin-induced increases of interspaces were more conspicuous in pelvis and abdomen than in thorax.Abbreviations E Na electromotive force of sodium transport mechansim - G KCI skin conductance with external KCI Ringer - G Na sodium conductance (series conductance) - G shunt shunt pathway conductance - G total total skin conductance - J v water flux (in units of volume per area per time) - MRC mitochondria-rich cells - PD potential difference across skin - R shunt resistance of the shunt pathway - SCC short-circuit current  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号