首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS) which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations) that the given DIS can adopt in three dimensions.  相似文献   

2.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

3.
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.  相似文献   

4.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

5.
The folding–unfolding process of reduced bovine pancreatic trypsin inhibitor was investigated with an idealized model employing approximate free energies. The protein is regarded to consist of only Cα and Cβ atoms. The backbone dihedral angles are the only conformational variables and are permitted to take discrete values at every 10°. Intraresidue energies consist of two terms: an empirical part taken from the observed frequency distributions of (?,ψ) and an additional favorable energy assigned to the native conformation of each residue. Interresidue interactions are simplified by assuming that there is an attractive energy operative only between residue pairs in close contact in the native structure. A total of 230,000 molecular conformations, with no atomic overlaps, ranging from the native state to the denatured state, are randomly generated by changing the sampling bias. Each conformation is classified according to its conformational energy, F; a conformational entropy, S(F) is estimated for each value of F from the number of samples. The dependence of S(F) on energy reveals that the folding–unfolding transition for this idealized model is an “all-or-none” type; this is attributable to the specific long-range interactions. Interresidue contact probabilities, averaged over samples representing various stages of folding, serve to characterize folding intermediates. Most probable equilibrium pathways for the folding–unfolding transition are constructed by connecting conformationally similar intermediates. The specific details obtained for bovine pancreatic trypsin inhibitor are as follows: (1) Folding begins with the appearance of nativelike medium-range contacts at a β-turn and at the α-helix. (2) These grow to include the native pair of interacting β-strands. This state includes intact regular secondary conformations, as well as the interstrand sheet contacts, and corresponds to an activated state with the highest free energy on the pathway. (3) Additional native long-range contacts are completely formed either toward the amino terminus or toward the carboxyl terminus. (4) In a final step, the missing contacts appear. Although these folding pathways for this model are not consistent with experimental reports, it does indicate multiple folding pathways. The method is general and can be applied to any set of calculated conformational energies and furthermore permits investigation of gross folding features.  相似文献   

6.
Amide hydrogen (NH) exchange is one of the few experimental techniques with the potential for determining the thermodynamics and kinetics of conformational motions at nearly every residue in native proteins. Quantitative interpretation of NH exchange in terms of molecular motions relies on a simple two-state kinetic model: at any given slowly exchanging NH, a closed or exchange-incompetent conformation is in equilibrium with an open or exchange-competent conformation. Previous studies have demonstrated the accuracy of this model in measuring conformational equilibria by comparing exchange data with the thermodynamics of protein unfolding. We report here a test of the accuracy of the model in determining the kinetics of conformational changes in native proteins. The kinetics of folding and unfolding for ubiquitin have been measured by conventional methods and compared with those derived from a comprehensive analysis of the pH dependence of exchange in native ubiquitin. Rate constants for folding and unfolding from these two very different types of experiments show good agreement. The simple model for NH exchange thus appears to be a robust framework for obtaining quantitative information about molecular motions in native proteins.  相似文献   

7.
Protein folding occurs simultaneously with disulfide bond formation. In general, the in vitro folding of proteins containing disulfide bond(s) is carried out in the presence of redox reagents, such as glutathione, to permit native disulfide pairing to occur. It is well known that the formation of a disulfide bond and the correct tertiary structure of a target protein are strongly affected by the redox reagent used. However, little is known concerning the role of each amino acid residue of the redox reagent, such as glutathione. Therefore, we prepared glutathione derivatives - glutamyl-cysteinyl-arginine (ECR) and arginyl-cysteinyl-glycine (RCG) - and examined their ability to facilitate protein folding using lysozyme and prouroguanylin as model proteins. When the reduced and oxidized forms of RCG were used, folding recovery was greater than that for a typical glutathione redox system. This was particularly true when high protein concentrations were employed, whereas folding recovery using ECR was similar to that of the glutathione redox system. Kinetic analyses of the oxidative folding of prouroguanylin revealed that the folding velocity (K(RCG) = 3.69 × 10(-3) s(-1)) using reduced RCG/oxidized RCG was approximately threefold higher than that using reduced glutathione/oxidized glutathione. In addition, folding experiments using only the oxidized form of RCG or glutathione indicated that prouroguanylin was converted to the native conformation more efficiently in the case of RCG, compared with glutathione. The findings indicate that a positively charged redox molecule is preferred to accelerate disulfide-exchange reactions and that the RCG system is effective in mediating the formation of native disulfide bonds in proteins.  相似文献   

8.
K Saito  E Welker  H A Scheraga 《Biochemistry》2001,40(49):15002-15008
The conformational folding of the nativelike intermediate des-[40-95] on the major oxidative folding pathway of bovine pancreatic ribonuclease A (RNase A) has been examined at various pHs and temperatures in the absence of a redox reagent. Des-[40-95] has three of the four disulfide bonds of native RNase A and lacks the bond between Cys40 and Cys95. This three-disulfide species was unfolded at low pH to inhibit any disulfide reshuffling and was refolded at higher pH, allowing both conformational folding and disulfide-reshuffling reactions to take place. As a result of this competition, 15-85% of des-[40-95], depending on the experimental conditions, undergoes intramolecular disulfide-reshuffling reactions. That portion of the des-[40-95] population which has native isomers of essential proline residues appears to fold faster than the disulfide reaction can occur. However, when the folding is retarded, conceivably by the presence of non-native isomers of essential proline residues, des-[40-95] may reshuffle before completing the conformational folding process. These results enable us to distinguish among current models for the critical structure-forming step in oxidative folding and reveal a new model for coupling proline isomerization to disulfide-bond formation. These experiments also demonstrate that the reshuffling-folding competition assay is a useful tool for detecting structured populations in conformational folding intermediates.  相似文献   

9.
The rates of the individual steps in the disulfide-coupled folding and unfolding of eight BPTI variants, each containing a single aromatic to leucine amino acid replacement, were measured. From this analysis, the contributions of the four phenylalanine and four tyrosine residues to the stabilities of the native protein and the disulfide-bonded folding intermediates were determined. While the substitutions were found to destabilize the native protein by 2 to 7 kcal/mol, they had significantly smaller effects on the intermediates that represent the earlier stages of folding, even when the site of the substitution was located within the ordered regions of the intermediates. These results suggest that stabilizing interactions contribute less to conformational stability in the context of a partially folded intermediate than in a fully folded native protein, perhaps because of decreased cooperativity among the individual interactions. The kinetic analysis also provides new information about the transition states associated with the slowest steps in folding and unfolding, supporting previous suggestions that these transition states are extensively unfolded. Although the substitutions caused large changes in the distribution of folding intermediates and in the rates of some steps in the folding pathway, the kinetically-preferred pathway for all of the variants involved intramolecular disulfide rearrangements, as observed previously for the wild-type protein. These results suggest that the predominance of the rearrangement mechanism reflects conformational constraints present relatively early in the folding pathway.  相似文献   

10.
The roles of aromatic residues in determining the folding pathway of bovine pancreatic trypsin inhibitor (BPTI) were analyzed mutationally by examining the distribution of disulfide-bonded intermediates that accumulated during the refolding of protein variants in which tyrosine or phenylalanine residues were individually replaced with leucine. The eight substitutions examined all caused significant changes in the intermediate distribution. In some cases, the major effect was to decrease the accumulation of intermediates containing two of the three disulfides found in the native protein, without affecting the distribution of earlier intermediates. Other substitutions, however, led to much more random distributions of the intermediates containing only one disulfide. These results indicate that the individual residues making up the hydrophobic core of the native protein make clearly distinguishable contributions to conformation and stability early in folding: The early distribution of intermediates does not appear to be determined by a general hydrophobic collapse. The effects of the substitutions were generally consistent with the structures of the major intermediates determined by NMR studies of analogs, confirming that the distribution of disulfide-bonded species is determined by stabilizing interactions within the ordered regions of the intermediates. The plasticity of the BPTI folding pathway implied by these results can be described using conformational funnels to illustrate the degree to which conformational entropy is lost at different stages in the folding of the wild-type and mutant proteins.  相似文献   

11.
Folding of the twisted beta-sheet in bovine pancreatic trypsin inhibitor   总被引:2,自引:0,他引:2  
The dominant role of local interactions has been demonstrated for the formation of the strongly twisted antiparallel beta-sheet structure consisting of residues 18-35 in bovine pancreatic trypsin inhibitor. Conformational energy minimization has indicated that this beta-sheet has a strong twist even in the absence of the rest of the protein molecule. The twist is maintained essentially unchanged when energy minimization is carried out by starting from the native conformation. By starting from a nontwisted beta-sheet conformation of residues 18-35, a strongly twisted structure (higher in energy than the native) is obtained. The high twist of the native-like beta-sheet is a consequence of its amino acid sequence, but it is enhanced strongly by interchain interactions that operate within the beta-sheet. The existence of the twisted beta-sheet structure does not require the presence of a disulfide bond between residue 14 and residue 38. It actually may facilitate the formation of this bond. Therefore, it is likely that the beta-sheet structure forms during an earlier stage of folding than the formation of this disulfide bond. This study provides an example of the manner in which conformational energy calculations can be used to provide information about the probable pathway of the folding of a protein.  相似文献   

12.
The oxidative folding of proteins consists of conformational folding and disulfide-bond reactions. These two processes are coupled significantly in folding-coupled regeneration steps, in which a single chemical reaction (the "forward" reaction) converts a conformationally unstable precursor species into a conformationally stable, disulfide-protected successor species. Two limiting-case mechanisms for folding-coupled regeneration steps are described. In the folded-precursor mechanism, the precursor species is preferentially folded at the moment of the forward reaction. The (transient) native structure increases the effective concentrations of the reactive thiol and disulfide groups, thus favoring the forward reaction. By contrast, in the quasi-stochastic mechanism, the forward reaction occurs quasi-stochastically in an unfolded precursor; i.e., reactive groups encounter each other with a probability determined primarily by loop entropy, albeit modified by conformational biases in the unfolded state. The resulting successor species is initially unfolded, and its folding competes with backward chemical reactions to the unfolded precursors. The folded-precursor and quasi-stochastic mechanisms may be distinguished experimentally by the dependence of their kinetics on factors affecting the rates of thiol--disulfide exchange and conformational (un)folding. Experimental data and structural and biochemical arguments suggest that the quasi-stochastic mechanism is more plausible than the folded-precursor mechanism for most proteins.  相似文献   

13.
Narayan M  Welker E  Scheraga HA 《Biochemistry》2003,42(23):6947-6955
A recently developed method is used here to characterize some of the folding intermediates, and the oxidative folding processes, of RNase A. This method is based on the ability of trans-[Pt(en)(2)Cl(2)](2+) to oxidize cysteine residues to form disulfide bonds faster than the disulfide bonds can be rearranged by reshuffling or reduction. Variations of this method have enabled us to address three issues. (i) How the nature of the residual structure and/or conformational order that is present, or develops, during the initial stages of folding can be elucidated. It is shown here that there is a 10-fold increase in the propensity of the unfolded reduced forms of RNase A to form the native set of disulfides directly, compared to the propensity under strongly denaturing conditions (4-6 M GdnHCl). Thus, the unfolded reduced forms of RNase A are not statistical coils with a more condensed form than in the GdnHCl-denatured state; rather, it is suggested that reduced RNase A has a little bias toward a native topology. (ii) The structural characterization of oxidative folding intermediates in terms of disulfide pairing is demonstrated; specifically, a lower-limit estimate is made of the percentage of native disulfide-containing molecules in the two-disulfide ensemble of RNase A. (iii) The critical role of structured intermediate species in determining the oxidative folding pathways of proteins was shown previously. Here, we demonstrate that the presence of a structured intermediate in the oxidative folding of proteins can be revealed by this method.  相似文献   

14.
Multi-disulfide-bond-containing proteins acquire their native structures through an oxidative folding reaction which involves formation of native disulfide bonds through thiol-disulfide exchange reactions between cysteines and disulfides coupled to a conformational folding event. Oxidative folding rates of the four-disulfide-bond-containing protein bovine pancreatic ribonuclease A (RNase A) in the presence of the synthetic redox-active molecule, (+/-)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane (BMC), and in combination with non-redox-active trimethylamine-N-oxide (TMAO), and trifluorethanol were determined by HPLC analysis. The data indicate that regeneration of RNase A is enhanced 2-fold by BMC (50 microM) and 3-fold upon addition of TMAO (0.2 M) and TFE (3% v/v) relative to control experiments performed in the absence of small-molecules. Examination of the native tendency of the fully-reduced polypeptide and the stability of key folding intermediates suggests that the increased oxidative folding rate can be attributed to native-like elements induced within the fully-reduced polypeptide and the stabilization of native-like species by added non-redox-active molecules.  相似文献   

15.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   

16.
Gordon M. Crippen 《Proteins》1996,26(2):167-171
To calculate the tertiary structure of a protein from its amino acid sequence, the thermodynamic approach requires a potential function of sequence and conformation that has its global minimum at the native conformation for many different proteins. Here we study the behavior of such functions for the simplest model system that still has some of the features of the protein folding problem, namely two-dimensional square lattice chain configurations involving two residue types. First we show that even the given contact potential, which by definition is used to identify the folding sequences and their unique native conformations, cannot always correctly select which sequences will fold to a given structure. Second, we demonstrate that the given contact potential is not always able to favor the native alignment of a native sequence on its own native conformation over other gapped alignments of different folding sequences onto that same conformation. Because of these shortcomings, even in this simple model system in which all conformations and all native sequences are known and determined directly by the given potential, we must reexamine our expectations for empirical potentials used for inverse folding and gapped alignment on more realistic representations of proteins. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The ligand binding module five (LA5) of the low density lipoprotein receptor is a small, single-domain protein of 40 residues and three disulfide bonds with a calcium binding motif that is essential for its structure and function. Several mutations in LA5 have been reported to cause familial hypercholesterolemia by impairing a proper folding of the module. The current study reports the oxidative folding and reductive unfolding pathways of wild type and mutant LA5 modules through kinetic and structural analysis of the trapped intermediates. Wild type LA5 folding involves an initial phase of nonspecific packing where the sequential oxidation of its cysteines gives rise to complex equilibrated populations of intermediates. In the presence of calcium, the attainment of a coordination-competent conformation becomes the rate-limiting step of folding while binding of the ion funnels both thermodynamically and kinetically the folding reaction toward the native state. In the absence of calcium, a scrambled isomer (termed Xa) constitutes the global free energy minimum of the folding process. Xa and the native form are stable, inter-convertible species whose relative populations at equilibrium appear displaced in disease-linked mutants toward the scrambled form. Because stable scrambled isomers such as Xa avoid the exposition of reactive cysteines in misfolded modules, they might constitute a strategy to prevent wrong interactions with other domains during folding of the receptor. Comparison of the folding pathways of wild type and mutant LA5 provides the molecular basis to understand how LA modules fold into a functional conformation or upon mutation misfold and lead to disease.  相似文献   

18.
Two new three-disulfide intermediates have been found to be populated in the oxidative folding pathway of bovine pancreatic ribonuclease A at a low temperature (15 degrees C). These intermediates, des-[26-84] and des-[58-110], possess all but one of the four native disulfide bonds and have a stable tertiary structure, similar to the two previously observed intermediates, des-[65-72] and des-[40-95]. While the latter two des species each lack one surface-exposed disulfide bond, the newly discovered intermediates each lack one buried disulfide bond. The possible involvement of these species in the rate-determining steps during the oxidative folding of RNase A is discussed and a specific role for such species during oxidative folding is suggested.  相似文献   

19.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

20.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号