首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TALL-103/2 cell line was derived from an immature acute T lymphocytic leukemia with T-myeloid differentiating capacity. The leukemic cells were first expanded in recombinant human IL-3 in which they acquired a myeloid phenotype, and subsequently were adapted to grow in human rIL-2 in which they became lymphoid committed. The TALL-103/2 cell line expresses only T cell-specific differentiation Ag (CD2, CD3, CD7, and CD8) but has retained the CD33 myeloid Ag originally present on the IL-3 expanded population. By using mAb directed at the TCR-alpha beta or specific for framework determinants on human TCR-gamma and -delta chains, the TALL-103/2 cells were shown to be WT31-, TCR delta 1+, TCS-1+, and Ti gamma A-, thus representing a T cell subset expressing the nondisulfide-linked form of the TCR-gamma delta. The TALL-103/2 cells have been maintained for more than 1 y in the presence of human rIL-2 on which they are strictly dependent. Chemical cross-linking and immunofluorescence studies indicate the presence of both high and intermediate affinity IL-2R on the TALL-103/2 cells. Whereas mAb antiTac and H-31 with reactivity to the IL-2R alpha-chain (p55) compete only partially for the IL-2-induced proliferation of these cells, mAb TU27, specific to the IL-2R beta-subunit (p75), inhibits such growth completely even at high concentrations of IL-2. The interactions of the two T cell-stimulating factors IL-1 and IL-4 on the IL-2-dependent growth of TALL-103/2 cells were investigated. IL-1 alpha synergizes with IL-2 in supporting the short and long term growth of this cell line, whereas IL-4 abrogates its growth. These effects are, at least in part, due to the modulation of IL-2R expression induced by the two lymphokines. Functionally, the TALL-103/2 cells display MHC-nonrestricted cytotoxic activity that is significantly enhanced by addition of either IL-4, IL-6, or IFN-gamma. Because of its properties and its stable requirement for IL-2 for continuous growth, this T lymphocytic leukemia-derived cell line represents an interesting model to analyze ontogeny and function of leukemic T cells.  相似文献   

2.
Murine CD3+,CD4-,CD8- peripheral T cells, which express various forms of the TCR-gamma delta on their cell surface, have been characterized in terms of their cell-surface phenotype, proliferative and lytic potential, and lymphokine-producing capabilities. Three-color flow cytofluorometric analysis demonstrated that freshly isolated CD3+,CD4-, CD8- TCR-gamma delta lymph node cells were predominantly Thy-1+,CD5dull,IL-2R-,HSA-,B220-, and approximately 70% Ly-6C+ and 70% Pgp-1+. After CD3+,CD4-,CD8-splenocytes were expanded for 7 days in vitro with anti-CD3-epsilon mAb (145-2C11) and IL-2, the majority of the TCR-gamma delta cells expressed B220 and IL-2R, and 10 to 20% were CD8+. In comparison to CD8+ TCR-alpha beta T cells, the population of CD8+ TCR-gamma delta-bearing T cells exhibited reduced levels of CD8, and about 70% of the CD8+ TCR-gamma delta cells did not express Lyt-3 on the cell surface. Functional studies demonstrated that splenic TCR-gamma delta cells proliferated when stimulated with mAb directed against CD3-epsilon, Thy-1, and Ly-6C, but not when incubated with an anti-TCR V beta 8 mAb, consistent with the lack of TCR-alpha beta expression. In addition, activated CD3+,CD4-,CD8- peripheral murine TCR-gamma delta cells were capable of lysing syngeneic FcR-bearing targets in the presence of anti-CD3-epsilon mAb and the NK-sensitive cell line, YAC-1, in the absence of anti-CD3-epsilon mAb. Finally, activated CD3+, CD4-,CD8-,TCR-gamma delta+ splenocytes were also capable of producing IL-2, IL-3, IFN-gamma, and TNF when stimulated in vitro with anti-CD3-epsilon mAb.  相似文献   

3.
Recently we described the establishment in culture and the immunophenotypic and functional characteristics of a human T-leukemia line TALL-103/2 derived from the T-cell receptor (TCR)-gamma/delta subset of T-lymphocytes. TALL-103/2 cells are absolutely dependent on interleukin 2 (IL-2) for their growth and survival in culture and thus provide a model cell line for studies of IL-2 signal transduction in a TCR-gamma/delta T-cell. In this report, we focus on the regulation of SRC-family protein tyrosine kinases (PTKs) by IL-2. TALL-103/2 cells were found to contain p56-LCK, p59-FYN, p62-YES and p53/56-LYN. Stimulation of growth factor-deprived TALL-103/2 cells with IL-2, however, induced increases in the relative activity only of the p56-LCK kinase. This IL-2-mediated increase in LCK kinase activity was manifested both by increased kinase autophosphorylation and by increased phosphorylation of the exogenous substrate enolase during in vitro kinase assays. Furthermore, immunoblot assays determined that the levels of p56-LCK protein were unaltered by IL-2-treatment, indicating that the measured elevations in LCK kinase activity reflected an increase in the specific activity of this PTK. In TALL-103/2 cells, IL-2 stimulated concentration-dependent increases in p56-LCK activity that displayed rapid and transient kinetics: detectable increases occurred within 1 minute after IL-2 stimulation, peaked at 10 minutes, and declined to baseline levels by 30 minutes. Treatment of TALL-103/2 cells with IL-4 abrogated IL-2-initiated proliferation, but did not inhibit IL-2-mediated activation of p56-LCK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A human leukemia cell line (TALL-101) was established from the bone marrow of a patient with an undifferentiated acute T cell leukemia using the conditioned medium (CM) of the human T cell leukemia virus (HTLV) II-transformed human cell line J-LB1. Immunofluorescence analysis on the original leukemic cells indicated the presence of T cell markers (Leu-1, Tdt, and T11); however, the established TALL-101 cell line expressed only antigens commonly present on progenitor cells, thymocytes, and myelomonocytic cells, but not on mature T cells. A high percentage of TALL-101 cells displayed the Tac antigen which was down-regulated upon incubation in the presence of recombinant human (rH) interleukin 2 (IL 2). Interferon (IFN)-gamma induced the appearance of class II histocompatibility leukocyte antigens (HLA) and of a T cell marker (3A1), and enhanced the expression of transferrin receptors on these cells. Further evidence for a T cell lineage of the TALL-101 cell line was provided by both chromosomic and genotypic analysis showing a translocation in chromosome 14 typical of T cell leukemias, and a rearrangement of the T-beta receptor locus. The growth-promoting activity in the J-LB1-CM was identified as granulocyte-macrophage colony stimulatory factor (GM-CSF), a growth factor which stimulates proliferation of normal myelomonocytic cells and other progenitor cells, but not known to have an effect on T cells. Dose response curves of [3H]thymidine incorporation and growth indicated that TALL-101 cells were sensitive to very low concentrations of rHGM-CSF, 5 ng/ml inducing maximal proliferation in chemically defined medium. The TALL-101 cell line is strictly GM-CSF-dependent for growth: upon depletion of GM-CSF from the culture medium, the cells stop proliferating immediately and die within 1 to 2 wk. The overall data, showing that GM-CSF is able to support the growth of a highly undifferentiated T cell leukemia, strongly suggests that this factor might have similar growth promoting effects on other immature T cell leukemias, and possibly, on normal T cell progenitors.  相似文献   

5.
Neither lytic NK cells nor IL-2-responsive NK precursors were produced in myeloid (Dexter) long-term bone marrow cultures (LTBMC). However, when myeloid LTBMC were switched to lymphoid (Whitlock-Witte) conditions and reseeded ("recharged") with fresh bone marrow cells (BMC), nonadherent cells with NK lytic activity and NK 1.1+ phenotype were produced within 1-2 weeks without the addition of exogenous IL-2 to the cultures. NK- and T cell-depleted BMC proliferated extensively in switched cultures and in 2 weeks generated cells that lysed the NK target YAC-1 but not the LAK target P815. The presence of NK precursors in the cultures was confirmed by reculturing nonadherent cells harvested from recharged LTBMC in fresh medium containing 50 U rIL-2/ml. High levels of NK lytic activity were generated. Sequential expression of NK 1.1 and IL-2 responsiveness followed by lytic activity was demonstrated by harvesting cells early after recharge, prior to the appearance of lytic cells. Elimination of NK 1.1+ cells depleted the ability to respond to IL-2 in secondary culture. Our studies demonstrate that myeloid-to-lymphoid switched LTBMC support the proliferation and differentiation of NK lineage cells from their NK 1.1-, nonlytic progenitors in the absence of an exogenous source of growth factors.  相似文献   

6.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

7.
BACKGROUND: DC are commonly defined as HLA-DR+/Lin- cells that can be CD11c+ + + CD123+/ -, termed DC1/myeloid DC that induce a Th1 response, or CD11c- CD123+ + +, termed DC2/lymphoid DC that induce a Th2 response. However, significant heterogeneity within DC preparations is apparent and supports the existence of several distinct DC subpopulations. This study aimed to expand and characterize CD34+ DC for use in immunotherapy. METHODS: CD34+ cells were seeded at 1 x 10(5)/mL and expanded for 14 days in RPMI + 10% autologous plasma supplemented with GM-CSF, IL-4, Flt-3L and SCF. Maturation was induced with TNF-alpha and PGE2 for 2 days. DC were analyzed morphologically, phenotypically with a panel of MAb to lineage and DC markers, and functionally in MLR, T-cell assays and T-cell cytokine secretion by ELISA. RESULTS: Significant cellular expansion was observed: 60+/-5 x 10(6) DC from 1 x 10(6) CD34+ cells (n=28). Phenotypically DC were characterized as HLA-DR+ +, CD11c+ + +, CD80+ +, CD83+, CD86+ +, CD123+ +, CD15+ +, CD33+ +, BDCA-1+ +, CD4+ and Lin-. DC displayed potent allostimulatory capacity and efficient presentation of KLH and tetanus toxin. DC-primed T cells secreted IFN-gamma (Th1); however, no detectable IL-4 (Th2) was noted. DISCUSSION: We present features of CD34+ DC that have not been previously described. The CD34+ DC generated represent a population of myeloid DC functioning as DC1 but phenotypically expressing markers characteristic of both DC1 and DC2. This novel DC population is capable of inducing naive T-cell responses and can be expanded to clinically useful numbers. CD34+-derived DC represent attractive candidates for use in adoptive T-cell immunotherapy.  相似文献   

8.
We have correlated the intensity of expression of CD45 Ag (T200 common leukocyte Ag) with mAb reactive with various lineages of hemopoietic cells in normal human bone marrow by using two-color immunofluorescence on a flow cytometer. Mature T lymphocytes (CD3+) and NK cells (CD16+ or CD11b+) expressed CD45 at the highest intensity. B lymphoid cells (CD19+) had three distinct levels of CD45 Ag expression. The bright CD45(3+) cells were mature B cells (CD19+, CD20+), whereas the less intense CD45(2+) cells were less mature B lymphoid cells (CD19+, CD10+). The dim CD45+ cells were very early, B lymphoid precursor cells (CD19+, CD10(2+), CD34+). The intensity of CD45 expression increased as cells matured in the monocytic lineage (CD14+, CD11b+). Among marrow granulocytic cells, CD45 intensity did not change on cells during maturation. Within the erythroid lineage, the most immature cells were CD45+ dim, and CD45 expression decreased during erythroid maturation to become undetectable on mature E. Hemopoietic progenitor cells (CD34+) expressed low levels of CD45 Ag. Expression of CD45R on marrow cells also showed intensity differences on different lineages. All NK cells (CD16+) were positive for CD45R, whereas only about one-half of the T lymphocytes (CD3+) were positive for CD45R. Almost all the cells in the erythroid and myelomonocytic lineages were CD45R-. Quantitative differences in expression of CD45R were observed on marrow B lymphoid cells which were correlated with the expression of CD45. The results show that quantitative changes in CD45 Ag expression accompany the differentiation and maturation of cells in the bone marrow. Comparisons with CD45R showed that this Ag was not always correlated with CD45. Since these Ag are the products of the same gene, these data indicate that the regulation of expression of the T200 molecules during normal hemopoietic development must be both quantitative and qualitative.  相似文献   

9.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

10.
Bone marrow-derived precursors colonize the thymus, where they constitute the minor L3T4-Lyt2- subset which can give rise to all thymocyte subpopulations. We show in the present paper that L3T4-Lyt2- population depleted of Ia+, Mac-1+ cells contain pluripotent hemopoietic stem cells (CFU-S) and granulocyte-macrophage colony-forming cells (GM-CFC). Addition of GM-CSF to the culture medium leads to the production of adherent and nonadherent cells of the macrophage-monocyte lineage. L3T4-Lyt2- cells poorly respond to IL-2 in vitro, but the addition of either rIL-3 or rGM-CSF allows the IL-2 response of L3T4-Lyt2- cells. This response is at least partly mediated by maturation of double-negative cells for L3T4 and Lyt-2 Ag into cells able to produce IL-1.  相似文献   

11.
In the present study we describe a novel functional cell surface molecule, designated as Kp43, which is expressed among leukocytes by NK cells, TCR-gamma/delta + T lymphocytes, and some CD8+ CD56+TCR-alpha/beta + T cell clones. The Kp43 Ag is a 70-kDa disulfide-linked dimer, which migrates in SDS-PAGE under reducing conditions as a single 43-kDa band. Two-color immunofluorescence staining of fresh PBL revealed that only a fraction of CD16+, and of TCR-gamma/delta + T lymphocytes expressed the Ag. The analysis of TCR-alpha/beta + T cell clones showed that a small proportion (2 out of 20) weakly expressed Kp43 together with the CD8 and CD56 molecules. By immunoperoxidase staining of different tissues the anti-Kp43, reactivity was detected exclusively in lymphoid organs, where a minority of scattered cells was stained, and in some liver sinusoidal cells. Essentially all NK cells acquired Kp43 when stimulated with a B lymphoblastoid cell line. By contrast, the pattern of distribution of Kp43 remained stable upon in vitro culture of T-gamma/delta lymphocytes, thus delineating two subsets according to its expression. In lymphokine-activated killer populations, obtained by culturing either PBL or NK cells with high concentration of IL-2, most CD16+ and CD56+ cells became Kp43+. The Kp43-specific mAb inhibited the IL-2-dependent proliferative response of cultured NK and TCR-gamma/delta + T cells without affecting their non-MHC-restricted cytotoxicity. The partial inhibitory effect, which was mediated as well by pepsin digested F(ab')2 fragments, was lost upon reduction to Fab. The anti-Kp43 mAb did not interfere with the specific binding of IL-2 to its surface receptors. Altogether the data point out that the Kp43 dimer is involved in the regulation of the IL-2-dependent proliferative response of NK cells and a subset of TCR-gamma/delta + T lymphocytes.  相似文献   

12.
13.
14.
Human rIL-7 was studied for its effects on myeloid and erythroid progenitors from human bone marrow cells. IL-7 did not support the granulocytic/monocytic or erythroid lineage but exclusively stimulated eosinophil colony formation (CFU-Eo) (4 +/- 3 vs 48 +/- 17 CFU-Eo/10(5) nonadherent fraction-non-T cell (NAF-NT) cells). This supportive effect was not mediated by T cells or monocytes because similar results were obtained with or without T cell or adherent depleted cell fractions. In addition, it was shown that CD34+ sorted cells could be stimulated by IL-7 (0 vs 15 +/- 9 CFU-Eo/3 x 10(3) CD34+ cells) Furthermore studies with IL-3 or granulocyte-macrophage CSF (GM-CSF) demonstrated an additive effect on the IL-7 supported colony formation. Finally, experiments were performed with anti-IL-3, anti-GM-CSF, anti-IL-1, and anti-IL-5 to exclude the possibility that IL-7 indirectly stimulated the eosinophil progenitor cell. Anti-GM-CSF, anti-IL-1, or anti-IL-3 did not influence the supportive effects of IL-7. However, anti-IL-5 did abolish the effects of IL-7 on the eosinophil colony formation (69 +/- 15 vs 3 +/- 2 CFU-Eo/10(5) NAF-NT, n = 3). Similar results were obtained with CD34+ sorted cells. Moreover, IL-5 mRNA expression could be demonstrated in IL-7-stimulated NAF-NT cells. These data suggest that the supportive effects of IL-7 on eosinophil precursors are mediated by the endogenous release of IL-5.  相似文献   

15.
We have explored the in vivo effect of IL-3 on the lymphopoiesis and humoral responses of mice bearing osmotic minipumps loaded with murine rIL-3 for 1 to 4 wk. A marked splenomegaly due to the accumulation of hemopoietic precursors was seen, but no increase was found in the lymphoid organs in the total number of cells belonging to the T or B lymphocyte lineage, i.e., of L3T4+ or Lyt-2+, or of allospecific cytotoxic T lymphocyte precursor for the T lineage, or of sIg+ or B220+ cells, or of B colony-forming cells for the B lineage; total activity of natural killer and lymphokine-activated killer cells was decreased. In contrast to the splenomegaly, a marked diminution in the number of thymocytes was observed, suggesting that rIL-3 in large amounts does suppress the T lymphopoiesis, perhaps as the result of the selective stimulation of early progenitor cells toward the hemopoietic pathway. rIL-3 perfusion during immunization increased the IgM and IgG responses to a T cell-dependent antigen, human IgG, and prevented tolerance induction by the deaggregated human IgG, although in the same conditions it did not modify the response to a T cell-independent antigen. Our results suggest that in vivo IL-3 does not act directly on lymphocytes or their precursors, but may potentiate the humoral immune response to T cell-dependent antigens, presumably by acting on accessory cells.  相似文献   

16.
Recent studies have shown that IL-2R are composed of at least two polypeptide chains of 55 kDa (Tac or alpha-chain) and 70 to 75 kDa (p70 or beta-chain). The association of both chains forms high affinity IL-2R, whereas each chain alone binds IL-2 with a low (alpha-chain) or intermediate (beta-chain) affinity. So far, the p70 peptide has been found, in the absence of the Tac peptide, on the surface of lymphoid cells of T, B, or NK lineage. In this study, we investigated whether leukemic cells of various hemopoietic lineages expressed the p70 IL-2-binding protein. We found that both fresh leukemic cells obtained from patients, and cells from established leukemic lines of T cells, B cell, and myeloid origin constitutively expressed a p70 IL-2-binding protein on their surface, as detected by affinity cross-linking of radioiodinated IL-2. IL-2 binding and cross-linking to these cells was completely inhibited in the presence of an excess unlabeled rIL-2, but not with an anti-Tac mAb. Binding experiments on pre-B and myeloid cell lines revealed intermediate affinity IL-2R, whereas both high and intermediate affinity IL-2R were detected in T leukemic cells. The intermediate affinity binding of 125I-rIL-2 to the leukemic cell lines MOLT4 and Reh6 was inhibited by the TU27 mAb, which recognized the p75 chain of IL-2R. Moreover, the TU27 mAb could stain the K562, KM3, and MOLT4 (weakly) cell lines by indirect immunofluorescence. A high dose of rIL-2 (400 U/ml) enhanced the proliferation of cells from one out of three patients with acute myeloblastic leukemia, but it did not induce differentiation of the cells in any of three cases. Thus the finding of p70 IL-2-binding molecules on immature lymphoid and nonlymphoid hemopoietic cells should disclose new biologic functions for IL-2.  相似文献   

17.
Autoimmune-susceptible, MRL-lpr/lpr (lpr) mice develop a profound lymphadenopathy resulting from the accumulation of CD4-CD8- (double-negative, DN) cells in peripheral lymphoid organs. The source and the mechanism of this abnormal accumulation of cells is still unknown. Recently, we reported that a significant number (approximately 35%) of the CD4-CD8- cells expressed J11d, a marker expressed by immature thymocytes but not by mature functional peripheral T cells. In the present study, we investigated the phenotype, growth requirements, and functional properties of purified J11d+ and J11d- subpopulations. Using the mAb, F23.1, which recognizes a TCR determinant encoded by the V beta 8 gene family, it was observed that approximately 30% of the J11d+ and J11d- DN cells expressed this determinant. Further studies on the thymus revealed that J11d+ DN cells from lpr thymus also contained F23.1+ cells (approximately 25%), whereas, similar cells from normal MRL(-)+/+mice were all F23.1-, consistent with earlier reports in other normal strains. Further phenotypic studies revealed that the peripheral J11d+ and J11d- cells from lpr mice were similar in expressing CD3, Ly-5 (B220), and Ly-24 (Pgp-1) determinants. When stimulated with phorbol myristic acetate (PMA) and recombinant IL-2 (rIL-2), only J11d- cells but not J11d+ cells responded by proliferation. However, in the presence of calcium ionophore (A23187) and PMA, both J11d+ and J11d- subpopulations proliferated by producing and responding to endogenous IL-2 but not IL-4. The lymph node T cells from 1-month-old MRL-lpr/lpr mice responded strongly when stimulated with PMA + rIL-4 or PMA + rIL-6. In contrast both J11d+ and J11d- subpopulations failed to respond when similarly stimulated. The J11d+ but not J11d- cells demonstrated spontaneous cytotoxic activity against the NK-sensitive YAC-1 tumor targets. The J11d- cells did not exhibit cytotoxic potential in spite of culture with PMA + rIL-2. Even after repeated culture in vitro with PMA + A23187 or PMA + rIL-2, both J11d+ and J11d- subpopulations failed to express the mature phenotype bearing CD4 and/or CD8 antigens. The present study demonstrates the expansion of unique J11d+, alpha beta-TCR+, DN T cells with cytotoxic potential in lpr mice and further suggests the existence of phenotypic and functional heterogeneity among the abnormal lpr DN cells.  相似文献   

18.
The T lymphocytes that accumulate in vast numbers in the lymphoid tissues of lpr/lpr (lpr) mice express a TCR-alpha beta that is polyclonally rearranged, and yet is devoid of surface CD4 or CD8 (CD4-8-) as well as CD2. lpr CD2- alpha beta + CD4-8- T cells exhibit an apparent block in signal transduction, in that when activated they produce little or no IL-2 and proliferate minimally in the absence of exogenous IL-2. In contrast to the predominant hyporesponsive alpha beta + CD4-8- T cells, we observe that a minor subset (1 to 2%) of lpr lymph node CD4-8- cells expresses a TCR-gamma delta and can proliferate upon activation with PMA and ionomycin in the absence of exogenous IL-2. Furthermore, these responsive gamma delta T cells express surface CD2. The functional and phenotypic distinctions of lpr gamma delta T cells led us to identify an analogous minor (4 to 10%) subset of alpha beta + CD4-8- cells in lpr thymus and lymph nodes that does express CD2. Similar to the gamma delta subset, these CD2+ alpha beta + CD4-8- cells are also capable of proliferation and IL-2 production. Thus the capacity for IL-2 production and proliferation by a small proportion of lpr CD4-8- T cells, either alpha beta + or gamma delta +, correlates with their expression of surface CD2. This correlation is supported by the observation that the lpr liver contains actively cycling alpha beta + CD4-8- lymphocytes that are strikingly enriched for CD2 expression. Consequently, unlike the vast proportion of abnormal lpr CD2- CD3+ CD4-8- cells, the CD2+ CD3+ CD4-8- T cells may not express the basic lpr defect, or else are not affected by its presence. These studies suggest that expression of the lpr abnormality may be restricted to a particular T cell lineage. This functional correlation with CD2 expression may be more broadly applicable to phenotypically similar subsets of normal thymocytes, and possibly peripheral tolerized T lymphocytes.  相似文献   

19.
20.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号