首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae cells that are mutated at TOP3, a gene that encodes a protein homologous to bacterial type I topoisomerases, have a variety of defects, including reduced growth rate, altered gene expression, blocked sporulation, and elevated rates of mitotic recombination at several loci. The rate of ectopic recombination between two unlinked, homologous loci, SAM1 and SAM2, is sixfold higher in cells containing a top3 null mutation than in wild-type cells. Mutations in either of the two other known topoisomerase genes in S. cerevisiae, TOP1 and TOP2, do not affect the rate of recombination between the SAM genes. The top3 mutation also changes the distribution of recombination events between the SAM genes, leading to the appearance of novel deletion-insertion events in which conversion tracts extend beyond the coding sequence, replacing the DNA flanking the 3' end of one SAM gene with nonhomologous DNA flanking the 3' end of the other. The effects of the top3 null mutation on recombination are dependent on the presence of an intact RAD1 excision repair gene, because both the rate of SAM ectopic gene conversion and the conversion tract length were reduced in rad1 top3 mutant cells compared with top3 mutants. These results suggest that a RAD1-dependent function is involved in the processing of damaged DNA that results from the loss of Top3 activity, targeting such DNA for repair by recombination.  相似文献   

2.
In Saccharomyces cerevisiae the SAM1 and SAM2 genes encode two distinct forms of S-adenosylmethionine (AdoMet) synthetase. In a previous study we cloned and sequenced the SAM1 gene (D. Thomas and Y. Surdin-Kerjan, J. Biol. Chem. 262:16704-16709, 1987). In this work, the SAM2 gene was isolated by functional complementation of a yeast double-mutant strain, and its identity was ascertained by gene disruption. It has been sequenced and compared with the SAM1 gene. The degree of homology found between the two genes shows that SAM1 and SAM2 are duplicated genes. Using strains disrupted in one or the other SAM gene, we have studied the regulation of their expression by measuring the steady-state level of mRNA after growth under different conditions. The results show that the expression of the two SAM genes is regulated differently, SAM2 being induced by the presence of excess methionine in the growth medium and SAM1 being repressed under the same conditions. The level of mRNA in the parental strain shows that it is not the sum of the levels found in the two disrupted strains. This raises the question of how the two AdoMet synthetases in S. cerevisiae interact to control AdoMet synthesis.  相似文献   

3.
Molecular cloning of the Candida maltosa ADE1 gene.   总被引:1,自引:0,他引:1  
The structural gene (ADE1) encoding phosphoribosyl-aminoimidazole-succinocarboxamide synthetase (SAICAR synthetase; EC 6.3.2.6) in Candida maltosa has been isolated by functional complementation of an ade1 strain of Saccharomyces cerevisiae. The gene was localized on a 2.5-kb BamHI DNA fragment. Nucleotide sequence analysis of the cloned gene has revealed an open reading frame encoding a protein (SAICAR synthetase) with an Mr of 32,751. The codon bias index, 0.68, indicates that the ADE1 gene is a moderately highly expressed gene. The cloned gene shows 63.5% nt identity and 65.2% deduced amino acid identity with the S. cerevisiae ADE1 gene which encodes the same enzymatic activity. The gene may be used as a convenient genetic marker for construction of a new host-vector system for C. maltosa.  相似文献   

4.
Abstract A gene encoding a type I topoisomerase (TOP1) was isolated from Candida albicans , sequenced, and expressed in Saccharomyces cerevisiae . The TOP1 gene was identified from a C. albicans genomic library by hybridization with the product of a polymerase chain reaction with degenerate primer sets encoding regions conserved in other TOP1 genes. A clone containing an open reading frame of 2463 bp and predicted to encode a protein of 778 amino acids with sequence similarity to eukaryotic type I topoisomerases was identified. The C. albicans TOP1 gene restored camptothecin sensitivity and increased the topoisomerase activity in S. cerevisiae , indicating that the DNA fragment encodes a functional C. albicans topoisomerase I.  相似文献   

5.
Replication factor C (RFC) is a five-subunit DNA polymerase accessory protein that functions as a structure-specific, DNA-dependent ATPase. The ATPase function of RFC is activated by proliferating cell nuclear antigen. RFC was originally purified from human cells on the basis of its requirement for simian virus 40 DNA replication in vitro. A functionally homologous protein complex from Saccharomyces cerevisiae, called ScRFC, has been identified. Here we report the cloning, by either peptide sequencing or by sequence similarity to the human cDNAs, of the S. cerevisiae genes RFC1, RFC2, RFC3, RFC4, and RFC5. The amino acid sequences are highly similar to the sequences of the homologous human RFC 140-, 37-, 36-, 40-, and 38-kDa subunits, respectively, and also show amino acid sequence similarity to functionally homologous proteins from Escherichia coli and the phage T4 replication apparatus. All five subunits show conserved regions characteristic of ATP/GTP-binding proteins and also have a significant degree of similarity among each other. We have identified eight segments of conserved amino acid sequences that define a family of related proteins. Despite their high degree of sequence similarity, all five RFC genes are essential for cell proliferation in S. cerevisiae. RFC1 is identical to CDC44, a gene identified as a cell division cycle gene encoding a protein involved in DNA metabolism. CDC44/RFC1 is known to interact genetically with the gene encoding proliferating cell nuclear antigen, confirming previous biochemical evidence of their functional interaction in DNA replication.  相似文献   

6.
R S Sidhu  S Mathewes  A P Bollon 《Gene》1991,107(1):111-118
Secretory protein-encoding genes of Saccharomyces cerevisiae have been cloned by a novel procedure that is based on the functional selection of their fusions with acid phosphatase (APase) at the DNA level. DNA fragments that functionally replace the promoter and signal sequence-encoding regions of the PHO5 gene (encoding APase) have been obtained by positive selection from a pool of cloned random DNA fragments. Five unique DNA sequences containing the promoter, and encoding signal sequences have been isolated. We have also isolated the complete gene, SSP120, encoding one of these S. cerevisiae secretory proteins, SSP120. Gene disruption studies have shown that the SSP120 gene is not essential for viability and growth. The SSP120 amino acid (aa) sequence has 13.5% identity with the middle 88-250 aa residues of the chicken glycosylation site-binding protein. However, SSP120 disruption did not affect protein glycosylation in yeast. The present study provides an alternative approach for the isolation of genes encoding secretory proteins, in contrast to classical genetic approaches that require isolation of functionally defective mutations followed by gene isolation by functional complementation. The present procedure should contribute to our understanding of protein sorting by permitting the cloning of genes encoding proteins targeted to different organelles in the secretory pathway.  相似文献   

7.
8.
A novel approach to isolation and functional characterization of the Hansenula polymorpha genes basing on the use of two strains of different origin is described. One of these strains is better suited for the isolation of genomic DNA fragments, while the other is preferable for their functional analysis. Thirty three genomic sequences governing expression of a reporter protein have been isolated. Analysis of the sequence encoding a homolog of the Saccharomyces cerevisiae cofilin revealed two introns. Another isolated DNA fragment encoded a homolog of the S. cerevisiae V ps10p. Disruption of the corresponding gene resulted in secretion of a vacuolar protein, carboxypeptidase Y, into the culture medium.  相似文献   

9.
The transport and regulation of maltose utilization by Torulaspora delbrueckii, one of the most abundant non-Saccharomyces species present in home-made corn and rye bread dough, has been investigated. A DNA fragment containing the MAL11 gene from T. delbrueckii (TdMAL11) was isolated by complementation cloning in Saccharomyces cerevisiae. DNA sequence analysis revealed the presence of an open reading frame (ORF) of 1884 bp, encoding a 627-amino acid membrane protein, which displays high homology to other yeast maltose transporters. Upstream of TdMAL11, the DNA insert contained a partial ORF (TdMAL12) on the opposite strand, which showed high similarity to the S. cerevisiae MAL12 gene. Sequence analysis, Northern blot and transport measurements indicated that TdMAL11 expression is regulated by the carbon source. Attempts to disrupt TdMAL11 revealed the presence of two functional MAL loci. Disruption of a single copy decreased the V(max) of maltose transport, but not the K(m), whereas the double disruption abolished the uptake of this sugar in T. delbrueckii.  相似文献   

10.
RecA-like activities that can form hybrid DNA in vitro have been identified in a wide variety of organisms. We have previously described the strand exchange protein 1 (SEP1) from the yeast Saccharomyces cerevisiae that can form hybrid DNA in vitro. Purified as an Mr 132,000 polypeptide, recent molecular and immunological studies have now shown that the native form is an Mr 175,000 polypeptide containing strand exchange activity. The gene encoding SEP1 has been cloned and sequenced. The primary sequence failed to reveal any significant sequence homology to other sequences in data base searches. In vivo SEP1 was found to be essential for normal meiosis as cells containing a homozygous insertion mutation in the SEP1 gene failed to sporulate. In order to identify additional factors that are involved in hybrid DNA formation in S cerevisiae, we used an in vitro stimulation assay to identify proteins that reconstitute strand exchange activity in reactions containing limiting amounts of SEP1. We have identified two proteins that functionally interact with SEP1. First, an Mr 34,000 single-stranded DNA binding protein stimulated the reaction by lowering the requirement for SEP1 about 3-4 fold. This protein is a fragment of the large subunit of a hetero-trimeric complex called yRP-A (yRF-A) which is thought to be the functional eukaryotic equivalent of single-stranded DNA binding proteins in prokaryotes. The gene encoding this protein (RPA1) is essential for growth. Second, an Mr 33,000 polypeptide, termed Stimulatory Factor 1 (SF1), dramatically stimulated the SEP1 catalyzed reaction by lowering the requirement for SEP1 about 300 fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
Phospholipase A1 (PLA1) is a hydrolytic enzyme that catalyzes removal of the acyl group from position 1 of lecithin to form lysolecithin. The genomic DNA and cDNA encoding PLA1 from Aspergillus oryzae were cloned with the mixed deoxyribonucleotide-primed polymerase chain reaction. The PLA1 gene is composed of 1,056 bp and has four exons and three short introns (63, 54, and 51 bp). The deduced amino acid sequence of PLA1 contained the N-terminal sequence of the mature PLA1 analyzed by Edman degradation. PLA1 cDNA has an open reading frame of 885 bp encoding the PLA1 precursor of 295 amino acid residues. The mature PLA1 is composed of 269 amino acid residues, and a prepro-sequence of 26 amino acid residues is at the N-terminal region of the PLA1 precursor. PLA1 has two possible N-glycosylation sites (Asn27 and Asn55). PLA1 has a consensus pentapeptide (-Gly-His-Ser-Xaa-Gly-), which is conserved in lipases. The amino acid sequence of PLA1 showed 47% identity with that of mono- and diacylglycerol lipase from Penicillium camembertii. The PLA1 cDNA was expressed in Saccharomyces cerevisiae KS58-2D, indicating the cloned gene to be functional.  相似文献   

14.
H Trinkl  K Wolf 《Gene》1986,45(3):289-297
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.  相似文献   

15.
The gene encoding the biotin-apoprotein ligase of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Abstract We report the isolation, genomic mapping, and DNA sequence of the BPL1 gene encoding the biotin-apoprotein ligase of Saccharomyces cerevisiae . The gene was isolated by complementation of an Escherichia coli birA (biotin-apoprotein ligase) mutant indicating that the expressed yeast protein modified the essential biotinated protein of the bacterial host. The BPL1 gene encodes a protein of 690 residues ( M r 76.4 kDa) with strong sequence similarites to the E. coli and human biotin-apoprotein ligases. BPL1 was mapped to chromosome IV, is allelic to the previously described ACC2 gene, and encodes the major (if not the only) biotin-apoprotein ligase activity of S. cerevisiae .  相似文献   

16.
17.
Several cDNA clones encoding mouse DNA topoisomerase II were obtained from a mouse spermatocyte cDNA library and the entire coding sequence of the gene was determined. The mouse DNA topoisomerase II consists of 1528 amino acids with a molecular weight of 173 kDa. It shares significant homologies with the other eucaryotic enzymes, although species-specific sequences are observed in their highly charged C-terminal regions. The complete mouse TOP2 cDNA was put under yeast GAL1 promoter and examined for complementation of top2ts mutation in S.cerevisiae. We found that the cloned mouse gene could rescue the temperature-sensitive top2ts mutation, depending on its induction by galactose. The functional expression of the mouse DNA topoisomerase II in yeast was further confirmed by enzymatic assays and by immunological methods with antibodies specific for the mouse enzyme.  相似文献   

18.
Glycogen synthase preparations from Saccharomyces cerevisiae contained two polypeptides of molecular weights 85,000 and 77,000. Oligonucleotides based on protein sequence were utilized to clone a S. cerevisiae glycogen synthase gene, GSY1. The gene would encode a protein of 707 residues, molecular mass 80,501 daltons, with 50% overall identity to mammalian muscle glycogen synthases. The amino-terminal sequence obtained from the 85,000-dalton species matched the NH2 terminus predicted by the GSY1 sequence. Disruption of the GSY1 gene resulted in a viable haploid with glycogen synthase activity, and purification of glycogen synthase from this mutant strain resulted in an enzyme that contained the 77,000-dalton polypeptide. Southern hybridization of genomic DNA using the GSY1 coding sequence as a probe revealed a second weakly hybridizing fragment, present also in the strain with the GSY1 gene disrupted. However, the sequences of several tryptic peptides derived from the 77,000-dalton polypeptide were identical or similar to the sequence predicted by the GSY1 gene. The data are explained if S. cerevisiae has two glycogen synthase genes encoding proteins with significant sequence similarity The protein sequence predicted by the GSY1 gene lacks the extreme NH2-terminal phosphorylation sites of the mammalian enzymes. The COOH-terminal phosphorylated region of the mammalian enzyme over-all displayed low identity to the yeast COOH terminus, but there was homology in the region of the mammalian phosphorylation sites 3 and 4. Three potential cyclic AMP-dependent protein kinase sites are located in this region of the yeast enzyme. The region of glycogen synthase likely to be involved in covalent regulation are thus more variable than the catalytic center of the molecule.  相似文献   

19.
产甘油假丝酵母(Candida glycerinogenes)作为优良的甘油生产菌株已经成功应用于工业化生产。但相对于酿酒酵母, 该菌株的耐高渗机理和甘油代谢的分子机制还不甚清楚。本文根据已公布的3-磷酸甘油脱氢酶基因的序列信息, 设计出一组寡核苷酸, 再运用简并PCR结合反向PCR技术从C. glycerinogenes的基因组DNA中获得了4 900 bp的核苷酸序列, 递交GenBank (No. EU186536)。该序列包含完整的编码胞浆3-磷酸甘油脱氢酶编码基因(CgGPD)开放阅读框及其上、下游调控序列。1 167 bp的开放阅读框编码388个氨基酸残基的蛋白。所演绎出氨基酸序列分析比对结果表明该基因产物的序列具有典型的胞浆3-磷酸甘油脱氢酶结构特征, 但与已鉴定的相关基因存在中等程度的同源性并在相应的辅酶催化位点和底物结合位点区域具有高度的保守性, 在氨基酸水平上与安格斯毕赤酵母的相似性最高, 达到70.9%。该基因在Saccharomyces cerevisiae W303A中异源表达能够显著提高细胞的甘油合成能力。  相似文献   

20.
A. M. Bailis  R. Rothstein 《Genetics》1990,126(3):535-547
Null mutations in three recombination and DNA repair genes were studied to determine their effects on mitotic recombination between the duplicate AdoMet (S-adenosylmethionine) synthetase genes (SAM1 and SAM2) in Saccharomyces cerevisiae. SAM1 and SAM2, located on chromosomes XII and IV, respectively, encode functionally equivalent although differentially regulated AdoMet synthetases. These similar but not identical (homeologous) genes are 83% homologous at the nucleotide level and this identity is limited solely to the coding regions of the genes. Single frameshift mutations were introduced into the 5' end of SAM1 and the 3' end of SAM2 by restriction site ablation. The sequences surrounding these mutations differ significantly in their degree of homology to the corresponding area of the other gene. Mitotic ectopic recombination between the mutant sam genes occurs at a rate of 8.4 x 10(-9) in a wild-type genetic background. Gene conversion of the marker within the region of greater sequence homology occurs 20-fold more frequently than conversion of the marker within the region of relative sequence diversity. The relative orientation of the two genes prevents the recovery of translocations. Mitotic recombination between the sam genes is completely dependent on the DNA repair and recombination gene RAD52. A mutation in PMS1, a mismatch repair gene, causes a 4.5-fold increase in the rate of ectopic recombination. RAD1, an excision repair gene, is required to observe this increased rate of ectopic conversion. In addition, RAD1 is involved in modulating the pattern of coconversion during recombination between the homeologous sam genes. These results suggest that interactions between mismatch repair, excision repair and recombinational repair functions are involved in determining the ectopic gene conversion frequency between the sam genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号