首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microdialysis sampling is a well-known method for collection of low molecular weight hydrophilic analytes. Due to the success of this sampling technique for these analytes, many researchers have wanted to extend the use of this method to a wider range of analytes-particularly proteins and peptides. These analytes pose unique challenges during microdialysis sampling. The primary challenges are the reduced recovery across the dialysis semi-permeable membrane and the volume limitations/requirements for the typical immunoassay methods used for detection of proteins. This review covers the practical and theoretical aspects needed for in vivo microdialysis sampling of cytokines, which are a vitally important class of signaling proteins. In addition to the basics of the microdialysis method for sampling cytokines, the use of the microdialysis device as a localized cytokine delivery method is also described. Since relative recovery of cytokines is often low during microdialysis sampling, methods to improve the membrane recovery are discussed for in vitro and in vivo applications.  相似文献   

2.
Cytokines are proteins that mediate communication between cells of the immune system as well as certain other non-immune host cells. These proteins are produced by many cell types and they mediate immune and inflammatory responses. However, the direct site analysis of these critical proteins is hampered by the lack of site-specific tools available for such direct measurements. In this study, both in vitro and in vivo microdialysis sampling of different cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], interleukin-6 [IL-6], IL-12p70, and macrophage chemoattractant protein-1 [MCP-1]) was performed. A mouse model of bacterial lipopolysaccharide (LPS) administration and response pattern was used for in vivo studies. Three cytokines, TNF-alpha, IL-6, and MCP-1 were quantified in the serum from mice given LPS. In vivo studies demonstrated the ability to monitor increasing levels of these cytokines (TNF-alpha, IL-6, and MCP-1) via microdialysis probes placed in the peritoneal cavity of mice given LPS. All three cytokines were quantified simultaneously in 15 muL of dialysate using a multiplexed bead-based immunoassay for flow cytometry. The detected dialysate cytokine concentrations varied between 200 pg/mL and 1500 pg/mL for TNF-alpha, between 600 pg/mL and 3000 pg/mL for MCP-1, and between 2700 pg/mL and more than 5000 pg/mL for IL-6. The detected serum cytokine concentrations ranged from 5700 pg/mL to 35,000 pg/mL for TNF-alpha, from 40,000 pg/mL to 65,000 pg/mL for MCP-1, and greater than than 100,000 pg/mL for IL-6. This work demonstrates that microdialysis sampling can be used in vivo to collect temporal profiles of cytokine production.  相似文献   

3.
Pediatric diffuse intrinsic pontine gliomas are aggressive brainstem tumors that fail to respond to treatment. We hypothesize that the protective features of the pons may hinder chemotherapeutic agents from entering pontine tissue compared with cortical brain tissue. To test this hypothesis, we developed a unique nonhuman primate model using microdialysis, a continuous in vivo extracellular sampling technique, to compare drug exposure concurrently in pontine tissue, cortical tissue, CSF, and plasma after intravenous administration of chemotherapeutic agents. The surgical coordinates and approach for microdialysis cannula–probe placement were determined in 5 adult male rhesus monkeys (Macaca mulatta) by using MRI. Microdialysis cannulas–probes were implanted stereotactically in the brain, retrodialysis was performed to measure relative recovery, and a 1-h intravenous infusion of temozolomide was administered. Continuous microdialysis samples were collected from the pons and cortex over 4 h with concurrent serial plasma and CSF samples. Postsurgical verification of microdialysis cannula–probe placement was obtained via MRI in 3 macaques and by gross pathology in all 5 animals. The MRI-determined coordinates and surgical methodologies resulted in accurate microdialysis probe placement in the pons and cortex in 4 of the 5 macaques. Histologic examination from these 4 animals revealed negligible tissue damage to the pontine and cortical tissue from microdialysis. One macaque was maintained for 8 wk and had no deficits attributed to the procedure. This animal model allows for the determination of differences in CNS penetration of chemotherapeutic agents in the pons, cortex, and CSF after systemic drug administration.Abbreviations: DIPG, diffuse intrinsic pontine glioma; ECF, extracellular fluidPediatric diffuse intrinsic pontine gliomas (DIPG) are aggressive tumors that cannot be surgically resected due to their location, and are resistant to chemotherapeutic and radiation therapies. As a result, children with DIPG have a dismal prognosis with median survival less than one year from diagnosis. One hypothesis for the poor efficacy of treatment is that innate CNS protective features, such as the blood–brain barrier and the blood–CSF barrier, shield the brainstem to a higher degree given its critical functions, and isolate pontine gliomas from treatment. To test this hypothesis, we developed a nonhuman primate model in rhesus monkeys to evaluate pontine tissue pharmacokinetics by using microdialysis, a continuous in vivo extracellular sampling technique based on diffusion. Microdialysis is the ‘gold standard’ for in vivo sampling methodologies in the CNS, enabling the collection of extracellular tissue fluid via passive diffusion by using a semipermeable membrane probe.A nonhuman primate model demonstrating the feasibility of microdialysis sampling from cortical brain tissue with concurrent pharmacokinetic sampling during chemotherapeutic drug administration has previously been established,3-5,7 but there are no current animal models that measure drug penetration into the pons. The location of the pons deep within the brain, as well as the vital brainstem functions associated with the pons, present additional obstacles to accurate microdialysis probe placement and sample collection. The objectives of the current study were to develop imaging and surgical procedures for the accurate placement of a microdialysis probe within the pons of rhesus monkeys for sample collection, to establish a method to perform microdialysis simultaneously in multiple CNS regions, and to develop a mechanism to perform repeated microdialysis in the same areas with a single invasive surgical procedure. This model allows for the pharmacokinetic comparison of drug penetration into pontine tissue, in conjunction with cortical tissue, plasma, and CSF, after intravenous administration.  相似文献   

4.
5.
An HPLC method for detecting nitrite in microdialysis samples obtained from activated RAW 264.7 macrophages in cell culture has been developed. Nitrite was quantified using a pre-column derivatization with 2,4-dinitrophenylhydrazine (2,4-DNPH) followed by HPLC-UV analysis of the azide product. For dialysates, the detection limit of nitrite was 750 nM and the quantitation limit was 2.5 microM. The microdialysis relative recovery of nitrite in the macrophage cell culture medium was determined to be 86+/-2% (n=3) at a flow rate of 0.7 microl/min. Nitrite produced from activated macrophages was measured immediately after lipopolysaccharide (LPS) stimulation using microdialysis sampling.  相似文献   

6.
7.
In vivo sampling of interstitial fluid by using microdialysis fibers has become a standard and accepted procedure. This sampling method is generally coupled to offline analysis of consecutive dialysate samples by high-performance liquid chromatography or capillary electrophoresis, but this combination is not the best approach for some applications, especially those which require high temporal resolution and rapid data collection. The purpose of this review is to provide information on enzyme-based online assays, i.e., continuous analysis of the dialysate as it emerges from the outlet of the sampling device. We have focused on methods developed specifically for the analysis of solutions perfused at a very slow flow rate, i.e., a feature of microdialysis and ultrafiltration techniques. These methods include flow enzyme-fluorescence assays, flow enzyme-amperometric assays, and sequential enzyme-amperometric detection. Each type of assay is discussed in terms of principle, applications, advantages, and limitations. We also comment on implantable biosensors, an obvious next step forward for in vivo monitoring of molecules in neuroscience.  相似文献   

8.
An enhanced microdialysis method for neuropeptides is described and some preliminary results of this novel approach are presented. The enhancement is achieved by adding a vehicle (solid support) to the perfusion fluid in order to increase the diffusion coefficient across the membrane and efficiently transport the analytes towards the detector. The microdialysis samples are desalted and then analyzed on an electrospray ionization orthogonal time-of-flight mass spectrometer. The preliminary results show major increase in signal when comparing this new approach of microdialysis with ordinary microdialysis.  相似文献   

9.
Cytokines are known to play a key role in the development of several hemopoietic lineages including lymphocytes. Two cytokines: IL-4 (in the presence of PMA) and IL-7 have been shown to induce immature fetal thymocyte proliferation. It has also been suggested that IL-2 plays an important role in fetal T cell development. In this report, we investigated the effects of several cytokines (known to be growth factors for T-lineage cells) on fetal thymocyte proliferation. Our results indicate that: 1) TNF-alpha and a newly described cytokine, P40, enhance fetal thymocyte proliferation stimulated by IL-2 (but not IL-4 or IL-7). 2) The enhancement induced by P40 is not mediated by TNF-alpha because blocking antibodies against this cytokine failed to inhibit this response. 3) IL-4 inhibits fetal thymocyte proliferation in response to TNF-alpha + IL-2 or to IL-7 but not to P40 + IL-2. Finally, 4) the proliferating cells to all cytokine combinations used were Thy-1+. These observations suggest that these cytokine combinations induce independent pathways of T cell proliferation in the developing thymus.  相似文献   

10.
The present study describes positive and negative interference of human cytokine measurement in multiplexed bead-based immunoassays. Significant differences in measured IL-6 and TNF-alpha values in 30 normal human plasma samples were apparent depending on whether measurements were with a 2-plex assay or embedded in a multiplex of 8-or more cytokine antibody pairs, as well as among the kits of 3-different vendors. Sample diluents containing proprietary blocking ingredients were shown to greatly affect the outcome of measured cytokine values. Additionally, recovery of IL-6 and TNF-alpha from spiked samples suggests significant negative interference from either endogenous antibodies, soluble receptors or anti-cytokine antibodies in 10% and 26% of samples, respectively. While it is evident that multiplexed immunoassays hold great promise for cytokine profiling, there are still important issues needing further study. Especially needed are universally optimized sample diluents, uniformly calibrated standards with mass values, and internal assay controls, which should greatly facilitate intralaboratory accuracy and precision and interlaboratory comparisons of cytokine measurements. Possible causes of interference and remedies are discussed.  相似文献   

11.
Profiling changes in the concentration of functionally related peptide hormones is critical to understanding the etiology of many diseases and therapies. We present novel data using nano liquid chromatography-mass spectrometry (LC-MS) to simultaneously measure a select group of vasoactive peptides (angiotensin, bradykinin, and related hormones) in 50-μl plasma samples, enabling repeated sampling in rodent models. By chromatographically resolving target peptides and using multiple reaction monitoring to enhance MS sensitivity, linear responses down to 10−17 mol were achieved. Purification of plasma peptides by either methanol precipitation or off-line high-performance liquid chromatography (HPLC) fractionation enabled the detection of endogenous peptides and revealed approaches for enhancing recovery. As proof of principle, seven vasoactive peptides were profiled before, during, and after acute angiotensin-converting enzyme (ACE) inhibition in an anesthetized rat. Of note was an apparent 10-fold increase in vasodilatory bradykinin that reversed after drug infusion but relatively minor changes in angiotensin II levels. Targeted MS analysis used to profile functionally related peptides or other analytes will greatly enhance our ability to define the sequence of events regulating complex and dynamic physiological processes.  相似文献   

12.
In this paper, we describe the use of iTRAQ (isobaric Tags for Relative and Absolute Quantitation) tags for comparison of protein expression levels between multiple samples. These tags label all peptides in a protein digest before labeled samples are pooled, fractionated and analyzed using mass spectrometry (MS). As the tags are isobaric, the intensity of each peak is the sum of the intensity of this peptide from all samples, providing a moderate enhancement in sensitivity. On peptide fragmentation, amino-acid sequence ions also show this summed intensity, providing a sensitivity enhancement. However, the distinct distribution of isotopes in the tags is such that, on further fragmentation, a tag-specific reporter ion is released. The relative intensities of these ions represent the relative amount of peptide in the analytes. Integration of the relative quantification data for the peptides allows relative quantification of the protein. This protocol discusses the rationale behind design, optimization and performance of experiments, comparing protein samples using iTRAQ chemistries combined with strong cation exchange chromatographic fractionation and MS.  相似文献   

13.
The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the brain. In conclusion, the usefulness of separation methods during BBB permeability evaluation is immense and more application of these methods is foreseen in the future.  相似文献   

14.
微透析校正的相关问题和方法   总被引:9,自引:0,他引:9  
微透析技术是研究生物动态变化的一种新型的活体生物采样技术,近年来由于实验方法的不断改进,微透析技术已广泛应用于在体的定量研究。在进行生物细胞外液的定量研究中,微透析探针的校正是十分必要的。本从微透析的回收率、影响因素及校正方法等方面简要介绍了微透析校正的相关问题。  相似文献   

15.
A high recovery microsampling probe based on microdialysis was devised. The new probe showed a high recovery (100%) of peptides in vitro at different perfusion flow rates (0.1-1.0 μl/min). At a high flow rate, 1.0 μl/min, a 10-fold increased in recovery of peptides compared to the conventional microdialysis probe was achieved. A probe made of a low molecular weight cutoff membrane is suitable for filtering off proteins. The new probe can be a useful tool for high recovery of peptides from living tissues.  相似文献   

16.
This study evaluated the suitability of some disinfection and sterilization methods for use with microdialysis probes. Disinfection or sterilization should minimize the tissue inflammatory reaction and improve the long-term health of rats on study and ensure the quality of data obtained by microdialysis sampling. Furthermore, the treatment should not negatively impact probe integrity or sampling performance. The techniques chosen for evaluation included two disinfection methods (70% ethanol and a commercial contact lens solution) and two sterilization methods (hydrogen peroxide plasma, and e-beam radiation). Linear microdialysis probes treated by these processes were compared to untreated probes removed from the manufacturer's packaging as if sterile (the control group). The probes were aseptically implanted in the livers of rats and monitored for 72 hours. The parameters chosen to evaluate probe performance were relative sample mass recovery and the relative in vivo extraction efficiency of the probe for caffeine. Post mortem bacterial counts and histopathology examination of liver tissue were also conducted. The probes remained intact and functional for the entire study period. The methods tested did not acutely alter the probes although hydrogen peroxide plasma and contact lens solution groups showed reduced extraction efficiencies. Minimal tissue damage was observed surrounding the probes and acute inflammatory reaction was mild to moderate. Low numbers of bacterial colonies from the implantation sites indicates that the health of animals in this study was not impaired. This was also true for the control group (untreated probe).  相似文献   

17.
TNF-alpha and IL-1 were reported to be the most powerful inducers of IL-8 in a multitude of cells, including leukocytes. In this study, we investigated TNF-alpha- and IL-1-mediated regulation of IL-8 gene expression in non-fractionated PBMC, and purified monocyte (MO) and lymphocyte (LY) fractions. Our analysis revealed that purified human MO did not respond to exogenous TNF-alpha with the induction of IL-8 mRNA or protein, nor require endogenous TNF-alpha for IL-8 expression. In contrast, in the presence of exogenous IL-1alpha and IL-1beta a substantial enhancement of IL-8 mRNA and protein expression in MO was observed. Nevertheless, antibodies to IL-1alpha and IL-1beta were unable to downregulate the expression of IL-8 in resting adherent or Staphylococcus aureus Cowan 1 (SAC)-stimulated MO. In contrast with MO, purified LY and non-fractionated PBMC expressed IL-8 in response to exogenous TNF-alpha, similar to exogenous IL-1alpha and IL-1beta. As was seen with MO, antibodies to TNF-alpha, IL-1alpha and IL-1beta did not inhibit the expression of IL-8 in purified LY and non-fractionated PBMC stimulated with SAC and LPS. Taken together, our data demonstrate major differences in responsiveness of MO and LY to exogenous TNF-alpha and IL-1, and suggest relative autonomy of IL-8 gene expression in these cells that does not require accessory cytokines but can be induced directly by exogenous stimuli.  相似文献   

18.
The application of in vivo microdialysis to the study of acetylcholine (ACh) release has contributed greatly to our understanding of cholinergic brain systems. This article reviews standard experimental procedures for dialysis probe selection and implantation, perfusion parameters, neurochemical detection, and data analysis as they relate to microdialysis assessments of cholinergic function. Particular attention is focused on the unique methodological considerations that arise when in vivo microdialysis is dedicated expressly to the recovery and measurement of ACh as opposed to other neurotransmitters. Limitations of the microdialysis technique are discussed, as well as methodological adaptations that may prove useful in overcoming these limitations. This is followed by an overview of recent studies in which the application of in vivo microdialysis has been used to characterize the basic pharmacology and physiology of cholinergic neurons. Finally, the usefulness of the microdialysis approach for testing hypotheses regarding the cholinergic systems' involvement in cognitive processes is examined. It can be concluded that, in addition to being a versatile and practical method for studying the neurochemistry of cholinergic brain systems, in vivo microdialysis represents a valuable tool in our efforts to better comprehend ACh's underlying role in a variety of behavioral processes.  相似文献   

19.
Creating protein profiles of tissues and tissue fluids, which contain secreted proteins and peptides released from various cells, is critical for biomarker discovery as well as drug and vaccine target selection. It is extremely difficult to obtain pure samples from tissues or tissue fluids, however, and identification of complex protein mixtures is still a challenge for mass spectrometry analysis. Here, we summarize recent advances in techniques for extracting proteins from tissues for mass spectrometry profiling and imaging. We also introduce a novel technique using a capillary ultrafiltration (CUF) probe to enable in vivo collection of proteins from the tissue microenvironment. The CUF probe technique is compared with existing sampling techniques, including perfusion, saline wash, fine-needle aspiration and microdialysis. In this review, we also highlight quantitative mass spectrometric proteomic approaches with, and without, stable-isotope labels. Advances in quantitative proteomics will significantly improve protein profiling of tissue and tissue fluid samples collected by CUF probes.  相似文献   

20.
Microdialysis is a widely used experimental technique, which offers the opportunity to measure drug and metabolite concentrations in the interstitial space fluid in animals and humans. However, microdialysis probes need to be calibrated in vivo to obtain a recovery factor, which describes the relative drug transfer across the membrane. Recently, novel time-saving calibration techniques, based on the use of reference compounds, have been developed. In particular, the use of endogenous urea levels has been advocated. In the present study we set out to validate the use of the urea reference technique for microdialysis probe calibration in healthy volunteers, employing glucose and paracetamol as model analytes. Urea calibration was compared with the results of two standard calibration techniques, i.e. the no net flux technique and the retrodialysis technique. For glucose, recovery values, calculated by the urea reference technique differed significantly from those values, which were assessed by the no net flux technique (p < 0.05), whereas for paracetamol recovery values did not differ significantly, albeit a high intramethod variability was observed (CV=66%). As a conclusion, we could not confirm the hypothesis that recovery values calculated by the urea reference technique provide equivalent results compared with standard calibration techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号