首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroendocrine basis of social recognition   总被引:3,自引:0,他引:3  
Studies conducted in the past two years have yielded several new insights about neuroendocrine regulation of social recognition. The social recognition deficits seen in oxytocin knockout mice have now been demonstrated in both males and females, as well as in female estrogen receptor knockout mice. The male vasopressin V1A receptor knockout mouse (but not V1B) has a profound social recognition deficit. Preliminary evidence suggests that female V1B receptor knockout mice could also have social memory deficits. Several lines of evidence have emerged that indicate that neuropeptide regulation is significantly modulated by gonadal and corticosteroid activation.  相似文献   

2.
The social organization of rodent species determines behavioral patterns for both affiliative and agonistic encounters. The neuropeptide oxytocin has been implicated in the mediation of social behavior; however, variability in both neuropeptide expression and social behavior within a single species indicates an additional mediating factor. The purpose of the present comparative study was to investigate social behaviors in naïve mixed-sex pairs of monogamous Peromyscus californicus and polygynous Peromyscus leucopus. We identified substantial inter- and intra-specific variability in the expression of affiliative and agonistic behaviors. Although all P. californicus tested engaged in frequent and prolonged intervals of social contact and rarely engaged in aggressive behaviors, P. leucopus exhibited significant variability in both measures of social behaviors. The naturally occurring differences in social behavior displayed by P. leucopus vary across the estrous cycle, and correspond to hypothalamic oxytocin, as well as circulating oxytocin and glucocorticoid concentrations. These results provide evidence for a rhythm in social behavior across the estrous cycle in polygynous, but not monogamous, Peromyscus species.  相似文献   

3.
Natural variations of wild Caenorhabditis elegans isolates having either Phe-215 or Val-215 in NPR-1, a putative orphan neuropeptide Y-like G protein-coupled receptor, result in either "social" or "solitary" feeding behaviors (de Bono, M., and Bargmann, C. I. (1998) Cell 94, 679-689). We identified a nematode peptide, GLGPRPLRF-NH2 (AF9), as a ligand activating the cloned NPR-1 receptor heterologously expressed in mammalian cells. Shifting cell culture temperatures from 37 to 28 degrees C, implemented 24 h after transfections, was essential for detectable functional expression of NPR-1. AF9 treatments linked both cloned receptor variants to activation of Gi/Go proteins and cAMP inhibition, thus allowing for classification of NPR-1 as an inhibitory G protein-coupled receptor. The Val-215 receptor isoform displayed higher binding and functional activity than its Phe-215 counterpart. This finding parallels the in vivo observation of a more potent repression of social feeding by the npr-1 gene encoding the Val-215 form of the receptor, resulting in dispersing (solitary) animals. Since neuropeptide Y shows no sequence homology to AF9 and was functionally inactive at the cloned NPR-1, we propose to rename NPR-1 and refer to it as an AF9 receptor, AF9-R1.  相似文献   

4.
Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)—a region important for social and reward learning—is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)—a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues—during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei.  相似文献   

5.
Neuropeptide FF has many functions both in the CNS and periphery. Two G protein-coupled receptors (NPFF1 and NPFF2 receptors) have been identified for neuropeptide FF. The expression analysis of the peptide and receptors, together with pharmacological and physiological data, imply that NPFF2 receptor would be the primary receptor for neuropeptide FF. Here, we report for the first time a cell line endogenously expressing hNPFF2 receptor. These SK-N-MC neuroblastoma cells also express neuropeptide FF. We used the cells to investigate the hNPFF2 receptor function. The pertussis toxin-sensitive inhibition of adenylate cyclase activity upon receptor activation indicated coupling to Gi/o proteins. Upon agonist exposure, the receptors were internalized and the mitogen-activated protein kinase cascade was activated. Upon neuropeptide FF treatment, the actin cytoskeleton was reorganized in the cells. The expression of hNPFF2 receptor mRNA was up-regulated by neuropeptide FF. Concomitant with the receptor mRNA, the receptor protein expression was increased. The homologous regulation of hNPFF2 receptor correlates with our previous results in vivo showing that during inflammation, the up-regulation of neuropeptide FF mRNA precedes that of NPFF2 receptor. The regulation of hNPFF2 receptor by NPFF could also be important in the periphery where neuropeptide FF has been suggested to function as a hormone.  相似文献   

6.
New neurones are produced in the adult hippocampus throughout life and are necessary for certain types of hippocampal learning. Little, however, is known about the control of hippocampal neurogenesis. We used primary hippocampal cultures from early post-natal rats and neuropeptide Y Y1 receptor knockout mice as well as selective neuropeptide Y receptor antagonists and agonists to demonstrate that neuropeptide Y is proliferative for nestin-positive, sphere-forming hippocampal precursor cells and beta-tubulin-positive neuroblasts and that the neuroproliferative effect of neuropeptide Y is mediated via its Y1 receptor. Immunohistochemistry confirmed Y1 receptor staining on both nestin-positive cells and beta-tubulin-positive cells in culture and short pulse 5-bromo-2-deoxyuridine studies demonstrated that neuropeptide Y has a proliferative effect on both cell types. These studies suggest that the proliferation of hippocampal neuroblasts and precursor cells is increased by neuropeptide Y and, therefore, that hippocampal learning and memory may be modulated by neuropeptide Y-releasing interneurones.  相似文献   

7.
Abe H  Watanabe Y  Inoue-Murayama M 《Gene》2012,494(2):174-180
Arginine vasotocin (AVT) is a neurohypophysial hormone that plays an essential role in various social behaviours. We investigated the degree of polymorphisms in the C-terminal domain of the AVT V2-type receptor (AVT2R) among avian species to determine the mechanism by which genetic polymorphisms in the neuropeptide receptor may contribute to different levels of signal transduction. In passerine birds, AVT2R was characterised by 2 variable regions, both of which were managed by insertion/deletion (indel); however, indels were rarely found in other avian taxa. The presence or absence of deletions in passerines largely affected the properties of the predicted palmitoylation sites at the proximal part of the C-terminal tail. Moreover, we detected intraspecific polymorphisms in estrildid finches based on the number of tri-amino acid (GHQ/EHQ/EHR) repeats in another variable region. Our results indicate that amino acid substitutions and length variation at the C-terminus may impact subsequent signal transduction and affect behavioural traits in wild birds.  相似文献   

8.
Complete understanding of how neuropeptides operate as neuromodulators and neurohormones requires integration of knowledge obtained at different levels of biology, including molecular, biochemical, physiological and whole organism studies. Major advances have recently been made in the understanding of the molecular basis of neuropeptide action in invertebrates by analysis of data generated from sequencing the genomes of several insect species, especially that of Drosophila melanogaster. This approach has quickly led to the identification of genes encoding: (1) novel neuropeptide sequences, (2) neuropeptide receptors and (3) peptidases that might be responsible for the processing and inactivation of neuropeptides. In this article, we review our current knowledge of the biosynthesis, receptor interaction and metabolic inactivation of the arthropod neuropeptide, proctolin, and how the analysis and exploitation of genome sequencing projects has provided new insights.  相似文献   

9.
The neuropeptide oxytocin is synthesized in the brain and released from neurohypophyseal terminals into the blood and within defined brain regions that regulate emotional, cognitive, and social behaviors. A recent study of CD38-/- mice (Jin et al., 2007) has demonstrated an essential role for the transmembrane receptor CD38 in secretion of oxytocin into the blood.  相似文献   

10.
SIFamide receptor (SIFR) is a Drosophila G protein-coupled receptor for the neuropeptide SIFamide (SIFa). Although the sequence and spatial expression of SIFa are evolutionarily conserved among insect species, the physiological function of SIFa/SIFR signaling remains elusive. Here, we provide genetic evidence that SIFa and SIFR promote sleep in Drosophila. Either genetic ablation of SIFa-expressing neurons in the pars intercerebralis (PI) or pan-neuronal depletion of SIFa expression shortened baseline sleep and reduced sleep-bout length, suggesting that it caused sleep fragmentation. Consistently, RNA interference-mediated knockdown of SIFR expression caused short sleep phenotypes as observed in SIFa-ablated or depleted flies. Using a panel of neuron-specific Gal4 drivers, we further mapped SIFR effects to subsets of PI neurons. Taken together, these results reveal a novel physiological role of the neuropeptide SIFa/SIFR pathway to regulate sleep through sleep-promoting neural circuits in the PI of adult fly brains.  相似文献   

11.
Numerous physiological processes in insects are tightly regulated by neuropeptides and their receptors. Although they form an ancient signaling system, there is still a great deal of variety in neuropeptides and their receptors among different species within the same order. Neuropeptides and their receptors have been documented in many hemipteran insects, but the differences among them have been poorly characterized. Commercial grapevines worldwide are plagued by the bug Daktulosphaira vitifoliae (Hemiptera: Sternorrhyncha). Here, 33 neuropeptide precursors and 48 putative neuropeptide G protein-coupled receptor (GPCR) genes were identified in D. vitifoliae. Their expression profiles at the probe and feeding stages reflected potential regulatory roles in probe behavior. By comparison, we found that the Releasing Hormone-Related Peptides (GnRHs) system of Sternorrhyncha was differentiated from those of the other 2 suborders in Hemiptera. Independent secondary losses of the adipokinetic hormone/corazonin-related peptide receptor (ACP) and corazonin (CRZ) occurred during the evolution of Sternorrhyncha. Additionally, we discovered that the neuropeptide signaling systems of Sternorrhyncha were very different from those of Heteroptera and Auchenorrhyncha, which was consistent with Sternorrhyncha's phylogenetic position at the base of the order. This research provides more knowledge on neuropeptide systems and sets the groundwork for the creation of novel D. vitifoliae management strategies that specifically target these signaling pathways.  相似文献   

12.
Summary The distribution of nerve fibers displaying neuropeptide Y immunoreactivity in relationship to the catecholaminergic innervation of rat, guinea pig, and rabbit liver was investigated by single- and double-label immunofluorescence methods. In all three species, neuropeptide Y-immunoreactive fibers are prominent in association with the vasculature, biliary pathway, and stromal compartment. The neuropeptide Y innervation of the parenchyma, on the other hand, differs among the three species in term of density. It is quite sparse in the rat and rabbit, particularly in the former species. In the guinea pig liver, numerous single, varicose neuropeptide Y-containing nerve fibers innervate the hepatic parenchyma; often, thin processes surround single hepatocytes and lie close to sinusoids. The immunoreactive pattern of tyrosine hydroxylase, a marker for catecholaminergic neurons and fibers, is comparable to that of neuropeptide Y. Most neuropeptide Y-containing nerve fibers also contain tyrosine hydroxylase immunoreactivity, in all three species, with the exception of the rabbit parenchyma, where a substantial proportion of catecholaminergic fibers lack immunoreactivity for neuropeptide Y. Finally, systemic administration of the sympathetic neurotoxin, 6-hydroxydopamine, in rats and guinea pigs resulted in virtually complete elimination of both neuropeptide Y- and tyrosine hydroxylase-immunoreactive fibers. These findings are consistent with the hypothesis that neuropeptide Y-containing nerve fibers form a subpopulation of the sympathetic innervation of the mammalian liver, which is likely to originate from prevertebral sympathetic ganglia.  相似文献   

13.
In this chapter, we describe a technique, FMRFamide tagging, that in principle can be used to measure the release of any sequenced neuropeptide. The method relies upon the addition of an "electrophysiologically active" tag to the prohormone that encodes the neuropeptide of interest. Secretion of the electrophysiological tag (and thus the peptide of interest) is detected by activation of the ionotropic "tag receptor." Both the tagged prohormone and the tag receptor are expressed in the cell type under investigation. Since the tag and the neuropeptide of interest are on the same prohormone they are co-secreted and thus secretion of the tag reflects the co-secretion of the neuropeptide of interest. This method can be used to detect neuropeptide secretion on a millisecond timescale.  相似文献   

14.
We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.  相似文献   

15.
C-terminal analogues of neuropeptide Y have been synthesized. The influence of chain length, single-amino-acid substitutions and segment substitutions on receptor binding, biological activity and conformational properties has been investigated. Receptor binding and in vivo assays revealed biological activity already for amino acids 28-36 of neuropeptide Y [neuropeptide Y-(Ac-28-36)-peptide] which increased with increasing chain length. Replacement of Arg25 in neuropeptide Y-(Ac-25-36)-peptide had no influence on binding, whereas Arg33 and Arg35 cannot be replaced by lysine or ornithine without considerable decrease in receptor binding. The introduction of conformational constraints by the 2-aminoisobutyric acid residue (Aib) in position 30 and replacing the amino acids 28-32 by Ala-Aib-Ala-Aib-Ala decreased receptor binding. However, the corresponding Aib-Ala-Aib-Ala-Aib-substituted analogue and a more flexible analogue with Gly5 at position 28-32 exhibited considerable affinity for the receptor. All these substitutions led to a decrease in postsynaptic activity. Strong agonistic activities could be detected in a series of 10 discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was neuropeptide Y amino acids 1-4 linked to amino acids 25-36 through aminohexanoic acid (Ahx) [neuropeptide Y-(1-4-Ahx-25-36)-peptide].  相似文献   

16.
MCH receptor peptide agonists and antagonists   总被引:1,自引:1,他引:0  
Melanin-concentrating hormone (MCH) is an important neuropeptide hormone involved in multiple physiological processes. Peptide derivatives of MCH have been developed as tools to aid research including potent radioligands, receptor selective agonists, and potent antagonists. These tools have been used to further understand the role of MCH in physiology, primarily in rodents. However, the tools could also help elucidate the role for MCHR1 and MCHR2 in mediating MCH signaling in higher species.  相似文献   

17.
In this chapter, we describe a technique, FMRFamide tagging, that in principle can be used to measure the release of any sequenced neuropeptide. The method relies upon the addition of an “electrophysiologically active” tag to the prohormone that encodes the neuropeptide of interest. Secretion of the electrophysiological tag (and thus the peptide of interest) is detected by activation of the ionotropic “tag receptor.” Both the tagged prohormone and the tag receptor are expressed in the cell type under investigation. Since the tag and the neuropeptide of interest are on the same prohormone they are co-secreted and thus secretion of the tag reflects the co-secretion of the neuropeptide of interest. This method can be used to detect neuropeptide secretion on a millisecond timescale.  相似文献   

18.
Urotensin II (UII) is a neuropeptide with potent cardiovascular effects. Its sequence is strongly conserved among different species and has structural similarity to somatostatin. No receptor for UII has been molecularly identified from any species so far. GPR14 was cloned as an orphan G protein-coupled receptor with similarity to members of the somatostatin/opioid receptor family. We have now demonstrated that GPR14 is a high affinity receptor for UII and designate it UII-R1a. HEK293 cells and COS-7 cells transfected with rat GPR14 showed strong, dose-dependent calcium mobilization in response to fish, frog, and human UII. Radioligand binding analysis showed high affinity binding of UII to membrane preparations isolated from HEK293 cells stably expressing rat GPR14. In situ hybridization analysis showed that GPR14 was expressed in motor neurons of the spinal cord, smooth muscle cells of the bladder, and muscle cells of the heart. The identification of the first receptor for UII will allow better understanding of the physiological and pharmacological roles of UII.  相似文献   

19.
The long-term effects of developmental experiences on social behavior, and the neuropeptide systems such as oxytocin which subserve the behavior, are still little understood. In this article, we review various types of early experience, including normal development, knockout models, pharmacological exposures, and early social experiences. We consider the processes by which experience can affect oxytocin receptor binding, and what is known about the directionality of experience effects on oxytocin receptors. Finally, we attempt to synthesize the literature into a predictive model as to the direction of early experience effects on oxytocin receptor binding potential, and whether these changes have functional significance. These predictions are relevant to current human health practice, given proposals to use chronic intranasal oxytocin to treat developmental disorders including autism and schizophrenia. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

20.
神经肽Y2受体(neuropeptideY2 receptor,NPY2R)是一种在很多生理及病理情况下广泛分布、表达于哺乳动物的G蛋白耦联受体。Y2受体在众多生理作用及疾病中发挥重要影响,通过神经肽Y在脊髓及脊髓以上水平的作用,Y2受体对神经病理痛的形成有密切联系。本文拟从Y2受体分子生物学基础、相关的作用机制及涉及神经病理痛实验研究方面,就Y2受体对痛觉调制中的作用作简单综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号