首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Photosynthetically active chimeric reaction centers which utilize genetic information from both Rhodobacter capsulatus and Rb. sphaeroides puf operons were isolated using a novel method termed chimeric rescue. This method involves in vivo recombination repair of a Rb. capsulatus host operon harboring a deletion in pufM with a non-expressed Rb. sphaeroides donor puf operon. Following photosynthetic selection, three revertant classes were recovered: 1) those which used Rb. sphaeroides donor sequence to repair the Rb. capsulatus host operon without modification of Rb. sphaeroides puf operon sequences (conversions), 2) those which exchanged sequence between the two operons (inversions), and 3) those which modified plasmid or genomic sequences allowing expression of the Rb. sphaeroides donor operon. The distribution of recombination events across the Rb. capsulatus puf operon was decidedly non-random and could be the result of the intrinsic recombination systems or could be a reflection of some species-specific, functionally distinct characteristic(s). The minimum region required for chimeric rescue is the D-helix and half of the D/E-interhelix of M. When puf operon sequences 3 of nucleotide M882 are exchanged, significant impairment of excitation trapping is observed. This region includes both the 3 end of pufM and sequences past the end of pufM.  相似文献   

8.
Abstract Two chlorate resistant mutants of Rhodobacter sphaeroides were isolated which were deficient in dimethylsulfoxide reductase activity. Immunoblotting experiments showed that the phenotype of these mutants and that of Rhodobacter capsulatus strain DK9, a mutant unable to reduce dimethylsulfoxide, was correlated with low or undetectable levels of the dimethylsulfoxide reductase apoprotein. All three mutants were complemented by a cosmid from a library of Rhodobacter sphaeroides genomic DNA. Further genetic complementation analysis revealed that functions required for restoration of dimethylsulfoxide reductase activity in the Rhodobacter sphaeroides mutants were encoded on an 9 kb EcoR1 DNA fragment derived from this cosmid. Expression of this 9 kb DNA fragment in Escherichia coli showed that it encoded the dimethylsulfoxide reductase structural gene of Rhodobacter sphaeroides .  相似文献   

9.
The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis.  相似文献   

10.
11.
12.
The hupT, hupU, and hupV genes, which are located upstream from the hupSLC and hypF genes in the chromosome of Rhodobacter capsulatus, form the hupTUV operon expressed from the hupT promoter. The hupU and hupV genes, previously thought to belong to a single open reading frame, encode HupU, of 34.5 kDa (332 amino acids), and HupV, of 50.4 kDa (476 amino acids), which are >/= 50% identical to the homologous Bradyrhizobium japonicum HupU and HupV proteins and Rhodobacter sphaeroides HupU1 and HupU2 proteins, respectively; they also have 20 and 29% similarity with the small subunit (HupS) and the large subunit (HupL), respectively, of R. capsulatus [NiFe]hydrogenase. HupU lacks the signal peptide of HupS and HupV lacks the C-terminal sequence of HupL, which are cleaved during hydrogenase processing. Inactivation of hupV by insertional mutagenesis or of hupUV by in-frame deletion led to HupV- and Hup(UV)- mutants derepressed for hydrogenase synthesis, particularly in the presence of oxygen. These mutants were complemented in trans by plasmid-borne hupTUV but not by hupT or by hupUV, except when expressed from the inducible fru promoter. Complementation of the HupV- and Hup(UV)- mutants brought about a decrease in hydrogenase activity up to 10-fold, to the level of the wild-type strain B10, indicating that HupU and HupV participate in negative regulation of hydrogenase expression in concert with HupT, a sensor histidine kinase involved in the repression process. Plasmid-borne gene fusions used to monitor hupTUV expression indicated that the operon is expressed at a low level (50- to 100-fold lower than hupS).  相似文献   

13.
14.
15.
16.
17.
A gene for photoactive yellow protein (PYP) was previously cloned from Rhodobacter capsulatus (Rc), and we have now found it to be associated with genes for gas vesicle formation in the recently completed genome sequence. However, the PYP had not been characterized as a protein. We have now produced the recombinant RcPYP in Escherichia coli as a glutathione-S-transferase (GST) fusion protein, along with the biosynthetic enzymes, resulting in the formation of holo-RcPYP following cleavage of the GST tag. The absorption spectrum (with characteristic peaks at 435 and 375 nm) and the photocycle kinetics, initiated by a laser flash at 445 nm, are generally similar to those of Rhodobacter sphaeroides (RsPYP) but are significantly different from those of the prototypic PYP from Halorhodospira halophila (HhPYP), which has a single peak at 446 nm and has slower recovery. RcPYP also is photoactive when excited with near-ultraviolet laser light, but the end point is then above the preflash baseline. This suggests that some of the PYP chromophore is present in the cis-protonated conformation in the resting state. The excess 435 nm form in RcPYP, built up from repetitive 365 nm laser flashes, returns to the preflash baseline with an estimated half-life of 2 h, which is markedly slower than that for the same reaction in RsPYP. Met100 has been reported to facilitate cis-trans isomerization in HhPYP, yet both Rc and RsPYPs have Lys and Gly substitutions at positions 99 and 100 (using HhPYP numbering throughout) and have 100-fold faster recovery kinetics than does HhPYP. However, the G100M and K99Q mutations of RcPYP have virtually no effect on kinetics. Apparently, the RcPYP M100 is in a different conformation, as was recently found for the PYP domain of Rhodocista centenaria Ppr. The cumulative results show that the two Rhodobacter PYPs are clearly distinct from the other species of PYP that have been characterized. These properties also suggest a different functional role, that we postulate to be in regulation of gas vesicle genes, which are known to be light-regulated in other species.  相似文献   

18.
19.
The cbb3-type cytochrome c oxidases (cbb3-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa3-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb3-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b3-CuB center, have to be coordinated precisely both temporally and spatially to yield a functional cbb3-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb3-Cox, and provide a highly tentative model for cbb3-Cox assembly and formation of its heme b3-CuB binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

20.
Abstract In Chlamydomonas reinhardtii there are three glutamate dehydrogenase isozymes which can use both NADH and NADPH as cofactors and respond differently to different nitrogen sources and several stress conditions. From data of induction of isozymes in different metabolic situations, we propose a possible physiological role for each of them in algal carbon and nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号