首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In chlorophyll biosynthesis protochlorophyllide reductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide) to chlorophyllide, providing a rare opportunity to trap and characterize catalytic intermediates at low temperatures. Moreover, the presence of a chlorophyll-like molecule allows the use of EPR, electron nuclear double resonance, and Stark spectroscopies, previously used for the analysis of photosynthetic systems, to follow catalytic events in the active site of POR. Different models involving the formation of either radical species or charge transfer complexes have been proposed for the initial photochemical step, which forms a nonfluorescent intermediate absorbing at 696 nm (A696). Our EPR data show that the concentration of the radical species formed in the initial photochemical step is not stoichiometric with conversion of substrate. Instead, a large Stark effect, indicative of charge transfer character, is associated with A696. Two components were required to fit the Stark data, providing clear evidence that charge transfer complexes are formed during the initial photochemistry. The temperature dependences of both A696 formation and NADPH oxidation are identical, and we propose that formation of the A696 state involves hydride transfer from NADPH to form a charge transfer complex. A catalytic mechanism of POR is suggested in which Pchlide absorbs a photon, creating a transient charge separation across the C-17-C-18 double bond, which promotes ultrafast hydride transfer from the pro-S face of NADPH to the C-17 of Pchlide. The resulting A696 charge transfer intermediate facilitates transfer of a proton to the C-18 of Pchlide during the subsequent first "dark" reaction.  相似文献   

2.
The latter stages of the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase, have been investigated using novel laser photoexcitation methods. The formation of the ternary product complex was initiated with a 6-ns laser pulse, which allowed the product release steps to be kinetically accessed for the first time. Subsequent absorbance changes associated with the release of the NADP+ and chlorophyllide products from the enzyme could be followed on a millisecond timescale. This has facilitated a detailed kinetic and thermodynamic characterization for the interconversion of all the various bound and unbound product species. Initially, NADP+ is released from the enzyme in a biphasic process with rate constants of 1210 and 237 s(-1). The rates of both phases show a significant dependence on the viscosity of the solvent and become considerably slower at higher glycerol concentrations. The fast phase of this process exhibits no dependence on NADP+ concentration, suggesting that conformational changes are required prior to NADP+ release. Following NADP+ release, the NADPH rebinds to the enzyme with a maximum rate constant of approximately 72 s(-1). At elevated temperatures (>298 K) chlorophyllide is released from the enzyme to yield the free product with a maximum rate constant of 20 s(-1). The temperature dependencies of the rates of each of these steps were measured, and enthalpies and entropies of activation were calculated using the Eyring equation. A comprehensive kinetic and thermodynamic scheme for these final stages of the reaction mechanism is presented.  相似文献   

3.
Heyes DJ  Hunter CN 《Biochemistry》2004,43(25):8265-8271
The chlorophyll biosynthetic enzyme protochlorophyllide reductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) into chlorophyllide (Chlide) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. POR is a light-driven enzyme, which has provided a unique opportunity to trap intermediates and identify different steps in the reaction pathway by initiating catalysis with illumination at low temperatures. In the present work we have used a thermophilic form of POR, which has an increased conformational rigidity at comparable temperatures, to dissect and study the final stages of the reaction where protein dynamics are proposed to play an important role in catalysis. Low-temperature fluorescence and absorbance measurements have been used to demonstrate that the reaction pathway for this enzyme consists of two additional "dark" steps, which have not been detected in previous studies. Product binding studies were used to show that spectroscopically distinct Chlide species could be observed and were dependent on whether the NADPH or NADP(+) cofactor was present. As a result we have been able to identify the intermediates that are observed during the latter stages of the POR catalytic cycle and have shown that they are formed via a series of ordered product release and cofactor binding events. These events involve release of NADP(+) from the enzyme and its replacement by NADPH, before release of the Chlide product has taken place. Following release of Chlide, the subsequent binding of Pchlide allows the next catalytic cycle to proceed.  相似文献   

4.
Lebedev N  Karginova O  McIvor W  Timko MP 《Biochemistry》2001,40(42):12562-12574
Fluorescence spectroscopic and kinetic analysis of photochemical activity, cofactor and substrate binding, and enzyme denaturation studies were performed with highly purified, recombinant pea NADPH:protochlorophyllide oxidoreductase (POR) heterologously expressed in Escherichia coli. The results obtained with an individual stereoisomer of the substrate [C8-ethyl-C13(2)-(R)-protochlorophyllide] demonstrate that the enzyme photoactive state possesses a characteristic fluorescence maximum at 646 nm that is due to the presence of specific charged amino acids in the enzyme catalytic site. The photoactive state is converted directly into an intermediate having fluorescence at 685 nm in a reaction involving direct hydrogen transfer from the cofactor (NADPH). Site-directed mutagenesis of the highly conserved Tyr275 (Y275F) and Lys279 (K279I and K279R) residues in the enzyme catalytic pocket demonstrated that the presence of these two amino acids in the wild-type POR considerably increases the probability of photoactive state formation following cofactor and substrate binding by the enzyme. At the same time, the presence of these two amino acids destabilizes POR and increases the rate of enzyme denaturation. Neither Tyr275 nor Lys279 plays a crucial role in the binding of the substrate or cofactor by the enzyme. In addition, the presence of Tyr275 is absolutely necessary for the second step of the protochlorophyllide reduction reaction, "dark" conversion of the 685 nm fluorescence intermediate and the formation of the final product, chlorophyllide. We propose that Tyr275 and Lys279 participate in the proper coordination of NADPH and PChlide in the enzyme catalytic site and thereby control the efficiency of the formation of the POR photoactive state.  相似文献   

5.
6.
The complete nucleotide sequence of the influenza A/PR/8/34 nucleoprotein gene was determined after cloning for dsDNA copy in pBR322. The nucleoprotein gene is 1517 nucleotides long of which 1446 nucleotides code for 482 amino acids. The calculated amino acid composition is in good agreement with those published for influenza A nucleoprotein genes. The amino acid sequence of the nucleoprotein contains clusters of basic amino acids and proline, a property shared with other nucleic-acid-associated proteins like Semliki forest virus nucleocapsid protein, VP1 protein of polyoma virus and Simian virus 40, and the core antigen of hepatitis B virus. The described nucleoprotein structure brings the number of sequenced genes of influenza A/PR/8/34 to five out of eight genes.  相似文献   

7.
A procedure for the purification of the enzyme NADPH:protochlorophyllide oxidoreductase is described. This involves fractionation of sonicated oat etioplast membranes by discontinuous-sucrose-density-gradient centrifugation, which gives membranes in which the enzyme is present at a high specific activity. The enzyme is solubilized from the membranes with Triton X-100, followed by gel filtration of the extract; enzyme activity is eluted in fractions corresponding to a mol.wt of approx. 35000. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the enzyme-containing fractions from gel filtration shows two peptides, of mol.wts. approx. 35000 and 37000.  相似文献   

8.
The light-driven enzyme NADPH:protochlorophyllide oxidoreductase (POR) catalyses the reduction of the C17-C18 double bond of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), which is a key regulatory step in the chlorophyll biosynthesis pathway. POR from the thermophilic cyanobacterium Thermosynechococcus elongatus is an attractive system for following the reaction and in the present work we have carried out a detailed steady state kinetic characterisation of this enzyme. The thermophilic POR was shown to have maximal activity at approximately 50 degrees C, which is similar to the growth temperature of the organism. The V(max) was calculated to be 0.53 microM min(-1) and the K(m) values for NADPH and Pchlide were 0.013 microM and 1.8 microM, respectively. The binding properties for both substrates as well as the NADP(+) product have been analysed by using fluorescence emission measurements, which have allowed the dissociation constants for binding to be calculated. These results represent the first steady state kinetic characterisation of a thermophilic version of POR.  相似文献   

9.
The early events in halorhodopsin after light excitation are studied with picosecond time resolution. Absorption and fluorescence measurements show that the electronically excited state of the incorporated retinal has a lifetime of 5 ps. Within that time a red-shifted photoproduct is formed that remains stable for at least 2 ns.  相似文献   

10.
11.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

12.
NADPH:protochlorophyllide oxidoreductase (POR) B is a key enzyme for the light-induced greening of etiolated angiosperm plants. It is nucleus-encoded, imported into the plastids posttranslationally, and assembled into larger light-harvesting POR:protochlorophyllide complexes termed LHPP (Reinbothe et al., Nature 397:80–84, 1999). An in vitro-mutagenesis approach was taken to study the role of the evolutionarily conserved Cys residues in pigment binding. Four Cys residues are present in the PORB of which two, Cys276 and Cys303, established distinct pigment binding sites, as shown by biochemical tests, protein import studies, and in vitro-reconstitution experiments. While Cys276 constituted the Pchlide binding site in the active site of the enzyme, Cys303 established a second, low affinity pigment binding site that was involved in the assembly and stabilization of imported PORB enzyme inside etioplasts.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
14.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   

15.
Kex2 protease from Saccharomyces cerevisiae is the prototype for a family of eukaryotic proprotein processing proteases belonging to the subtilase superfamily of serine proteases. Kex2 can be distinguished from degradative subtilisins on the basis of stringent substrate specificity and distinct pre-steady-state behavior. To better understand these mechanistic differences, we have examined the effects of substrate residues at P(1) and P(4) on individual steps in the Kex2 catalytic cycle with a systematic series of isosteric peptidyl amide and ester substrates. The results demonstrate that substrates based on known, physiological cleavage sites exhibit high acylation rates (> or =550 s(-1)) with Kex2. Substitution of Lys for the physiologically correct Arg at P(1) resulted in a > or =200-fold drop in acylation rate with almost no apparent effect on binding or deacylation. In contrast, substitution of the physiologically incorrect Ala for Nle at P(4) resulted in a much smaller defect in acylation and a modest but significant effect on binding with Lys at P(1). This substitution also had no effect on deacylation. These results demonstrate that Kex2 utilizes enzyme-substrate interactions in different ways at different steps in the catalytic cycle, with the S(1)-P(1) contact providing a key specificity determinant at the acylation step.  相似文献   

16.
Haas JA  Fox BG 《Biochemistry》2002,41(49):14472-14481
Stearoyl-acyl carrier protein Delta(9)-desaturase (delta9D) catalyzes regio- and stereospecific insertion of cis double bonds into acyl chains attached to acyl carrier protein. Steady-state and stopped-flow fluorescence anisotropy measurements using acylated forms of dansyl- and fluoresceinyl-ACPs revealed equilibrium dissociation constants and dissociation rate constants for 16:0-, 17:0-, and 18:0-ACPs with resting and chemically 4e(-) reduced delta9D. Binding of 1 nM 18:0-fluoresceinyl-ACP to one subunit of the dimeric resting delta9D was observed with K(D1) = 13 +/- 3 nM. No significant difference in the K(D1) value was observed for 4e(-) delta9D. An approximately 4-fold increase in K(D1) per methylene group was observed upon shortening the acyl chain from 18:0 to 17:0 and then 16:0. In different experiments performed with 850 nM 18:0-dansyl-ACP, binding to the second subunit of resting delta9D was estimated to have K(D2) approximately 350 +/- 40 nM. The K(D2) values exhibited a similar dependence on acyl chain length as observed for the K(D1) values. The k(off) values measured by stopped-flow anisotropy measurements for reversal of the enzyme-substrate complex were also acyl-chain length dependent and increased 130-fold for 16:0-ACP (130 s(-)(1)) relative to 18:0-ACP (1 s(-)(1)). Increases in acyl chain length are thus associated with the presently reported increases in the K(D) and k(off) values. These results indicate that acyl chain length selectivity derives in major part from partition of the enzyme-substrate complex between substrate release and subsequent steps in catalysis.  相似文献   

17.
18.
19.
The dynamic equilibrium of a catalytic site between active and inactive conformations, the missing link between the structure and function of allosteric enzymes, was identified using protein engineering and NMR techniques. Kinetic analyses of the wild-type and three mutants of Thermus L-lactate dehydrogenase established that the allosteric property of the enzyme is associated with a concerted transition between the high-affinity (R) and low-affinity (T) states. By introducing mutations, we prepared an enzyme in which the R and T states were balanced. The conformation of the enzyme-bound coenzyme, NAD+, which interacts directly with the substrate, was analyzed using NMR spectroscopy. NAD+ bound to the mutant enzyme was in a conformational mixture of the active and inactive forms, while NAD+ took on predominantly one of the two forms when it was bound to the other enzymes we had analyzed. We interpret this to mean that the catalytic site is in equilibrium between the two conformations. The ratio of the conformers of each enzyme agreed with the [T]/[R] ratio as determined by kinetic analyses. Therefore, it is the identified conformational equilibrium of the catalytic site that governs the allosteric regulation of the enzyme activity.  相似文献   

20.
3-phosphoglycerate kinase (PGK) is a typical two-domain hinge-bending enzyme with a well-structured interdomain region. The mechanism of domain-domain interaction and its regulation by substrate binding is not yet fully understood. Here the existence of strong cooperativity between the two domains was demonstrated by following heat transitions of pig muscle and yeast PGKs using differential scanning microcalorimetry and fluorimetry. Two mutants of yeast PGK containing a single tryptophan fluorophore either in the N- or in the C-terminal domain were also studied. The coincidence of the calorimetric and fluorimetric heat transitions in all cases indicated simultaneous, highly cooperative unfolding of the two domains. This cooperativity is preserved in the presence of substrates: 3-phosphoglycerate bound to the N domain or the nucleotide (MgADP, MgATP) bound to the C domain increased the structural stability of the whole molecule. A structural explanation of domain-domain interaction is suggested by analysis of the atomic contacts in 12 different PGK crystal structures. Well-defined backbone and side-chain H bonds, and hydrophobic and electrostatic interactions between side chains of conserved residues are proposed to be responsible for domain-domain communication. Upon binding of each substrate newly formed molecular contacts are identified that firstly explain the order of the increased heat stability in the various binary complexes, and secondly describe the possible route of transmission of the substrate-induced conformational effects from one domain to the other. The largest stability is characteristic of the native ternary complex and is abolished in the case of a chemically modified inactive form of PGK, the domain closure of which was previously shown to be prevented [Sinev MA, Razgulyaev OI, Vas M, Timchenko AA & Ptitsyn OB (1989) Eur J Biochem180, 61-66]. Thus, conformational stability correlates with domain closure that requires simultaneous binding of both substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号