共查询到20条相似文献,搜索用时 15 毫秒
1.
James E. Whitney Joanna B. Whittier Craig P. Paukert Julian D. Olden Angela L. Strecker 《Reviews in Fish Biology and Fisheries》2017,27(2):463-479
Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change. 相似文献
2.
Charles C. Davis Charles G. Willis Richard B. Primack Abraham J. Miller-Rushing 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1555):3201-3213
Climate change has resulted in major changes in the phenology—i.e. the timing of seasonal activities, such as flowering and bird migration—of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes in biodiversity within and across communities are not well understood. Here, we build on our previous results that established a link between plant species'' phenological response to climate change and a phylogenetic bias in species'' decline in the eastern United States. We extend a similar approach to plant and bird communities in the United States and the UK that further demonstrates that climate change has differentially impacted species based on their phylogenetic relatedness and shared phenological responses. In plants, phenological responses to climate change are often shared among closely related species (i.e. clades), even between geographically disjunct communities. And in some cases, this has resulted in a phylogenetically biased pattern of non-native species success. In birds, the pattern of decline is phylogenetically biased but is not solely explained by phenological response, which suggests that other traits may better explain this pattern. These results illustrate the ways in which phylogenetic thinking can aid in making generalizations of practical importance and enhance efforts to predict species'' responses to future climate change. 相似文献
3.
Rewi M. Newnham 《Aerobiologia》1999,15(2):87-94
To test models predicting biological reponse to future climate change, it is essential to find climatically-sensitive, easily monitored biological indicators that respond to climate change. Routine monitoring of airborne pollen, now undertaken on a near-global basis, could be adapted for this purpose. Analysis of spatial and seasonal variations in pollen levels in New Zealand suggests that the timing of onset and peak abundance of certain pollen taxa should be explored as possible bio-indicators of climate change. The onset of the airborne grass pollen season during the summer of 1988/89 varied consistently with latitude, and hence temperature, with the season in Southland commencing 8--9 days after Northland. However, these patterns were only apparent after sampling sites were separated into two groups reflecting predominantly urban or rural pollen sources. A less consistent north to south trend was apparent in the frequency of high (30 grains/m3) grass pollen levels, with high levels frequent in North Island localities in November, December and January and in southern localities during December and January. The successive onset of pollen seasons for the principal tree species during the spring-to-early summer warming interval may also be a useful bio-indicator of climate change. As well as assisting forecasts of the onset of the pollinosis season, these biogeographical patterns, reflecting climatic variation with latitude, suggest that routine aeropalynological monitoring might provide early signals of vegetation response to climate change. These conclusions are supported by recent investigations of long-term aeropalynological datasets in Europe that indicate earlier onset of pollen seasons in response to recent global warming. 相似文献
4.
Uncertainty in projections of global change impacts on biodiversity over the 21st century is high. Improved predictive accuracy is needed, highlighting the importance of using different types of models when predicting species range shifts. However, this is still rarely done. Our approach integrates the outputs of a spatially‐explicit physiologically inspired model of extinction and correlative species distribution models to assess climate‐change induced range shifts of three European reptile species (Lacerta lepida, Iberolacerta monticola, and Hemidactylus turcicus) in the coming decades. We integrated the two types of models by mapping and quantifying agreement and disagreement between their projections. We analyzed the relationships between climate change and projected range shifts. Agreement between model projections varied greatly between species and depended on whether or not they consider dispersal ability. Under our approach, the reliability of predictions is greatest where the predictions of these different types of models converge, and in this way uncertainty is reduced; sites where this convergence occurs are characterized by both current high temperatures and significant future temperature increase, suggesting they may become hotspots of local extinctions. Moreover, this approach can be readily implemented with other types of models. 相似文献
5.
Patterns and uncertainties of species' range shifts under climate change 总被引:10,自引:0,他引:10
Wilfried Thuiller 《Global Change Biology》2004,10(12):2020-2027
6.
Climate change has led to shifts in phenology in many species distributed widely across taxonomic groups. It is, however, unclear how we should interpret these shifts without some sort of a yardstick: a measure that will reflect how much a species should be shifting to match the change in its environment caused by climate change. Here, we assume that the shift in the phenology of a species' food abundance is, by a first approximation, an appropriate yardstick. We review the few examples that are available, ranging from birds to marine plankton. In almost all of these examples, the phenology of the focal species shifts either too little (five out of 11) or too much (three out of 11) compared to the yardstick. Thus, many species are becoming mistimed due to climate change. We urge researchers with long-term datasets on phenology to link their data with those that may serve as a yardstick, because documentation of the incidence of climate change-induced mistiming is crucial in assessing the impact of global climate change on the natural world. 相似文献
7.
Bioclimate envelope models (BEMs) have often been criticized as being too simplistic due to e.g. not incorporating effects of biotic interactions or evolutionary adaptation. However, BEMs are widely applied and have proven to be often useful. Here we investigate, under which conditions evolution of dispersal, local adaptation or interspecific competition may be of minor importance for forecasting future range shifts. Therefore we use individual‐based simulations of metapopulations under climate change living in spatial temperature gradients. Scenarios incorporate single‐species systems or systems with competing species, respectively. Dispersal rate is evolving and adaptation to local conditions may also evolve in some scenarios. Results show that in single‐species scenarios excluding evolutionary adaptation, species either follow optimal habitat conditions or go extinct if habitat connectivity is too low. These simulations are in close accordance to predictions from BEMs. Including evolutionary adaptation qualitatively changes these results. In the absence of competing species the species either completely invades the world or goes extinct. With competitors, results strongly depend on habitat fragmentation. For highly connected habitats the range border may shift as predicted by BEMs, for intermediate connectivity it will lag behind, while species will go extinct if fragmentation is too high. Our results indicate that (simple) BEMs may work well if habitats are well connected and species will not encounter many difficulties in dispersing to new sites. Selection in this case may promote evolution of even higher dispersal activities. We thus show that the presence of biotic interactions may be ignored for predictions of range shifts when high dispersal can be expected. 相似文献
8.
9.
Quantifying species' range shifts in relation to climate change: a case study of Abies spp. in China
Predicting species range shifts in response to climatic change is a central aspect of global change studies. An ever growing number of species have been modeled using a variety of species distribution models (SDMs). However, quantitative studies of the characteristics of range shifts are rare, predictions of range changes are hard to interpret, analyze and summarize, and comparisons between the various models are difficult to make when the number of species modeled is large. Maxent was used to model the distribution of 12 Abies spp. in China under current and possible future climate conditions. Two fuzzy set defined indices, range increment index (I) and range overlapping index (O), were used to quantify range shifts of the chosen species. Correlation analyses were used to test the relationships between these indices and species distribution characteristics. Our results show that Abies spp. range increments (I) were highly correlated with longitude, latitude, and mean roughness of their current distributions. Species overlapping (O) was moderately, or not, correlated with these parameters. Neither range increments nor overlapping showed any correlation with species prevalence. These fuzzy sets defined indices provide ideal measures of species range shifts because they are stable and threshold-free. They are reliable indices that allow large numbers of species to be described, modeled, and compared on a variety of taxonomic levels. 相似文献
10.
Philip Hunter 《EMBO reports》2017,18(5):673-676
11.
Modelling species' range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change 总被引:6,自引:0,他引:6
There is an urgent need for accurate prediction of climate change impacts on species ranges. Current reliance on bioclimatic envelope approaches ignores important biological processes such as interactions and dispersal. Although much debated, it is unclear how such processes might influence range shifting. Using individual-based modelling we show that interspecific interactions and dispersal ability interact with the rate of climate change to determine range-shifting dynamics in a simulated community with two growth forms--mutualists and competitors. Interactions determine spatial arrangements of species prior to the onset of rapid climate change. These lead to space-occupancy effects that limit the rate of expansion of the fast-growing competitors but which can be overcome by increased long-distance dispersal. As the rate of climate change increases, lower levels of long-distance dispersal can drive the mutualists to extinction, demonstrating the potential for subtle process balances, non-linear dynamics and abrupt changes from species coexistence to species loss during climate change. 相似文献
12.
13.
Pioneering efforts to predict shifts in species distribution under climate change used simple models based on the correlation between contemporary environmental factors and distributions. These models make predictions at coarse spatial scales and assume the constancy of present correlations between environment and distribution. Adaptive management of climate change impacts requires models that can make more robust predictions at finer spatio-temporal scales by accounting for processes that actually affect species distribution on heterogeneous landscapes. Mechanistic models of the distribution of both species and vegetation types have begun to emerge to meet these needs. We review these developments and highlight how recent advances in our understanding of relationships among the niche concept, species diversity and community assembly point the way towards more effective models for the impacts of global change on species distribution and community diversity. 相似文献
14.
15.
J. R. STEWART 《Journal of evolutionary biology》2009,22(12):2363-2375
The Quaternary fossil record has abundant evidence for ecologically nonanalogue communities made up of combinations of modern taxa not seen in sympatry today. A brief review of the literature detailing these nonanalogue communities is given with a discussion of their various proposed causes. The individualistic, Gleasonian, response of species to climate and environmental change is favoured by many. The degree to which communities are nonanalogue appears to increase with greater time depth, and this progressive process is a necessary outcome of the individualistic response of species to climate change through time. In addition, it is noted that populations within species, as well as the species as a whole, respond individualistically. This paper proposes that many elements of nonanalogue communities are extinct populations, which may explain their environmentally anomalous combinations. These extinct populations are, by definition, lineages without descendents. It is further proposed that the differential extinction of populations, as a result of continuous ecological reassembly, could amount to a significant evolutionary phenomenon. 相似文献
16.
Simulated climate change: a field manipulation study of polar microarthropod community response to global warming 总被引:5,自引:0,他引:5
Andrew D. Kennedy 《Ecography》1994,17(2):131-140
Passive cloches were deployed at three altitudinally distinct sites on Signy Island, maritime Antarctica, to investigate the effect of ameliorated thermal environment upon fellfield microarthropod communities Temperature was monitored at 1 5 m height, at ground surface level, and at 5 cm depth in cloche and control plots During summer (December - March), cloches elevated monthly mean temperatures by up to 2 46°C at the soil surface and 2 20°C at 5 cm depth Integrated air temperatures over consecutive 10 d periods were up to 4 65°C wanner in cloches than controls During winter (April - November), snow cover of the fellfield sites buffered temperature variation and reduced the treatment effect After eight years of these manipulations, sampling of the upper 50 mm of soil revealed consistently greater microarthropod populations within cloches than in controls (treatment effect p<0.05) Maximum difference occurred at high altitude where thermal amelioration was greatest (site effect p<0.05) Cloche populations of the numerically dominant collembolan Cryptopygus antarcticus Willem contained an increased proportion of small (length < 750 μm) individuals No species new to Signy Island were recorded Relating these microarthropod populations to the ameliorated thermal environment suggests that Antarctic invertebrate communities may respond to global warming, as predicted by global circulation models, with an increase in abundance with little increase in diversity However, this response could be indirect, the intermediate controlling factor being the percentage cover of the soil surface by vegetation, itself a function of climate change 相似文献
17.
Climate change (first of all the rise in temperature) is currently considered one of the most serious global challenges facing mankind. Here we review the diversity of insect responses to the current climate warming, with particular focus on true bugs (Heteroptera). Insects as ectotherms are bound to respond to the temperature change, and different species respond differently depending on their specific physiological and ecological traits, seasonal cycle, trophic relations, etc. Insect responses to climate warming can be divided into six categories: changes in (1) ranges, (2) abundance, (3) phenology, (4) voltinism, (5) morphology, physiology, and behavior, and (6) relationships with other species and in the structure of communities. Changes in ranges and phenology are easier to notice and record than other responses. Range shifts have been reported more often in Lepidoptera and Odonata than in other insect orders. We briefly outline the history and eco-physiological background of the recent range limit changes in the Southern green stink bug Nezara viridula (Heteroptera, Pentatomidae) in central Japan. Range expansion in individual species can lead to enrichment of local faunas, especially at high latitudes. Phenological changes include not only advances in development in spring but also shifts in phenology later in the season. The phenophases related to the end of activity usually shift to later dates, thus prolonging the period of active development. This may have both positive and negative consequences for the species and populations. As with any other response, the tendencies in phenological changes may vary among species and climatic zones. The proven cases of change in voltinism are rare, but such examples do exist. Application of models based on thermal parameters of development suggests that a rise in temperature by 2°C will result in an increased number of annual generations in many species from different arthropod taxa (up to three or four additional generations in Thysanoptera, Aphidoidea, and Acarina). The warming-mediated changes in physiology, morphology, or behavior are difficult to detect and prove, first of all because of the absence of reliable comparative data. Nevertheless, there are examples of changes in photoperiodic responses of diapause induction and behavioral responses related to search of shelters for summer diapause (aestivation). Since (1) individual species do not exist in isolation and (2) the direction and magnitude of responses even to the same environmental changes vary between species, it may be expected that in many cases the current stable relationships between species will be affected. Thus, unequal range shifts in insects and their host plants may disrupt their trophic interactions near the species?? range boundaries. Studies of responses to climate warming in more than one interrelated species or in entire communities are extremely rare. The loss of synchronism in seasonal development of community members may indicate inability of the higher trophic levels to adapt fully to climate warming or an attempt of the lower trophic level to escape from the pressure of the higher trophic levels. It is generally supposed that many insect species in the Temperate Climate Zone will benefit in some way from the current climate warming. However, there is some experimental evidence of an opposite or at least much more complex response; the influence of warming might be deleterious for some species or populations. It is suggested that species or populations from the cold or temperate climate have sufficient phenotypic plasticity to survive under the conditions of climate warming, whereas species and populations which already suffer from stress under extreme seasonal temperatures in warmer regions may have a limited ??maneuver space?? since the current temperatures are close to their upper thermal limits. Without genetic changes, even moderate warming will put these species or populations under serious physiological stress. The accumulated data suggest that responses of insects and the entire biota to climate warming will be complex and will vary depending on the rate of warming and ecological peculiarities of species and regions. Physiological responses will vary in their nature, direction, and magnitude even within one species or population, and especially between seasons. The responses will also differ in different seasons. For example, warming may negatively affect nymphal development during the hot season but at the same time accelerate growth and development during the cold season and/or ensure milder and more favorable overwintering conditions for adults. All these factors will affect population dynamics of particular species and relationships among the members of ecosystems. We should keep in mind that (1) not only selected insect species but almost all the species will be affected, (2) temperature is not the only component of the climatic system that is changing, and (3) responses will be different in different seasons. Host plants, phytophagous insects, their competitors, symbionts, predators, parasites, and pathogens will not only respond separately to climate changes; individual responses will further affect the responses of other species, thus making reliable prediction extremely complicated. Responses are expected to (1) be species- or population-specific, (2) concern basically all the aspects of organism/ species biology and ecology (individual physiology, population structure, abundance, local adaptations, phenology, voltinism, and distribution), and (3) occur at scales ranging from an undetectable cellular level to major distribution range shifts or regional extinctions. The scale of insect responses will depend on the extent and rate of climate warming. Slight to moderate warming may cause responses only in a limited number of species with more flexible life cycles, whereas a substantial increase in temperature may affect a greater number of different species and ecological groups. 相似文献
18.
蝴蝶对全球气候变化的响应及其研究进展 总被引:2,自引:0,他引:2
本文综述了蝴蝶对全球气候变化响应的相关研究概况,以期了解气候变化对蝴蝶产生的影响及其响应的有关研究进展,为进一步利用指示物种对气候等环境变化监测及预警生态系统健康状况的研究提供可资借鉴的方法与思路. 相似文献
19.
The social environment has a strong effect on the strength and direction of sexual selection. Juveniles, however, often have social cues that signal the current competitive environment which may provide cues of future competitive challenges. Here we demonstrate that juvenile crickets (Teleogryllus commodus) use the calls of surrounding adult males as a cue of the quality and density of rivals/mates they are likely to encounter. We reared hatchling crickets in six acoustic environments that varied in the density and quality of calls and demonstrate that individuals modified their development rate, phenotype and behaviour at maturity. Males matured more rapidly at a smaller size and called more when reared in a low competition environment. In contrast, males delayed maturity to grow larger when faced with an increased density of high-quality males. Females matured more rapidly when reared in a high density of high-quality males and allocated proportionately more resources towards egg production. A second experiment limiting nutrient availability demonstrates sex-specific allocation shifts in the last stadium when cues are most reliable. Our results demonstrate that the social environment significantly affects allocation strategies and phenotypes, highlighting the importance of juvenile experience and competitive context when examining fitness and selection. 相似文献
20.
Philine Werner Stefan Lötters Benedikt R. Schmidt Jan O. Engler Dennis Rödder 《Ecography》2013,36(10):1127-1137
Abrupt range limits of parapatric species may serve as a model system to understand the factors that determine species’ range borders. Theory suggests that parapatric range limits can be caused by abiotic conditions along environmental gradients, biotic interactions or a combination of both. Geographic ranges of the parapatric salamanders, Salamandra salamandra and S. atra, meet in small contact zones in the European Alps and to date, the cause of parapatry and the restricted range of S. atra remain elusive. We combine multivariate approaches and climatic data analysis to explore niche differentiation among the two salamanders with respect to the available climatic environment at their contact zones. Our purpose is to evaluate whether climatic conditions explain the species’ sharp range limits or if biotic interactions may play a role for range delimitation. Analyses were carried out in three contact zones in Switzerland to assess possible geographic variation. Our results indicate that both species occur at localities with different climatic conditions as well as the presence of a strong climatic gradient across the species’ range limits. Although the species’ climatic niches differ moderately (with a wider niche breadth for S. atra), interspecific niche overlap is found. Comparisons among the contact zones confirm geographic variation in the species’ climatic niches as well as in the conditions within the geographically available space. Our results suggest that the change in climatic conditions along the recognized gradient represents a determining factor for species’ range limits within contact zones. However, our analyses of geographic variation in climatic conditions reveal that both salamander species can occur in a much wider range of conditions than observed within contact zones. This finding and the interspecific climatic niche overlap within each contact zone provides indirect evidence that biotic interactions (likely competition) between the two species may also determine their range limits. 相似文献