首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The regulation of human platelet responses by cyclic AMP (cAMP) has been investigated by measuring thrombin-stimulated serotonin release, Ca2+ uptake and phospholipase activity. Thrombin-induced 1,2-diacylglycerol (DG) formation as a result of phospholipase C activation was inhibited by pretreatment with dibutyryl cAMP (dbcAMP) in a dose-dependent manner. Subsequent failure to produce phosphatidic acid (PA), which is converted from 1,2-DG by phosphorylation and would serve as intracellular Ca2+ ionophore, appeared to parallel the decrease in Ca2+ uptake activity. Phospholipase A2 activity, monitored by the production of [3H]lysophosphatidylcholine and [3H]lysophosphatidylethanolamine, was also suppressed by dbcAMP. These data indicate that the intracellular cAMP level may be closely associated with Ca2+ uptake and phospholipases activation. In addition, it is suggested that alteration of intracellular cAMP regulates phospholipase activation and consequently platelet responses, perhaps by controlling available Ca2+ content.  相似文献   

3.
Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20–40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.  相似文献   

4.
Pituitaries were collected from a common carp,yprinss carpi, belonging to vitellogenic phase and cells were disaggregated by using 0.3% collagenase and 0.05% tsypsin. Enzymatically dispersed cells were incubatedin vitro in Ca2+-free medium to observe the effect ofCanna punctatus GnRH (cGnRH) and Ca2+ on pituitary cell cAMP accumulation. Addition of cGnRH (20 Big) to pituitary cell incubation (6 × 104 cells/well) containing 4 mM theophylline, a phosphodiesterase inhibitor, caused two-fold increase of cAMP accumulation in comparison to control, Addition of Ca2+ (2 mM) to cGnRH further augmented cAMP accumulation, i.e., four-fold as compared to control. Increasing concentrations of cGnRH in the presence of Ca2+ resulted in a dose-dependent increase in cAMP accumulation. To examine the specificity of Ca2+ augmentory effect on cGnRH-stimulated pituitary cell cAMP accumulation, a specific Ca2+-channel blocker, verapamil was used, At 3 μM dose verapamil completely waived Ca2+-augmentation of cGnRH stimulatory effect on cAMP. Interestingly, verapamil also significantly inhibited cGnRH stimulation of cAMP in the Ca2+-free medium. Extent of Ca2+ plus cGnRH stimulatory effect on cAMP was further increased by the addition of 25 pmol of calmodulin, a Ca2+-carrier protein, Addition of verapamil to this system strongly inhibited Ca2+ and ealmodulin augnientory effect on cGnRH. Reduced level of cAMP in the pituitary cell due to verapamil was even lower than that of cGnRH plus ealmodulin incubation. Data indicates a contamination of Ca2+ in an apparently Ca2+-free medium, Results suggest that in lower vertebrate, i.e., fish, GnRH stimulation of pituitary cell cAMP is dependent on extracellulnr Ca2+ and incubation of pituitary cell in Ca2+-free medium is truly not free of Ca2+.  相似文献   

5.
Neurotransmitter receptors are formed during chick embryo development in the amnion, an avascular extraembryonic membrane devoid of innervation. Carbachol induces phasic and tonic contractions mediated by M3 cholinoceptors in an amniotic membrane strip isolated from 11–14-day-old chick embryo. The carbachol effect on the amnion contractile activity was studied in normal physiological salt solution, during depolarization by K+, exposure to nifedipine, and in calcium-free medium. Voltage-dependent and receptor-operated Ca2+ channels as well as calcium from intracellular stores are involved in the contractile response to carbachol. Phasic contractions of the amnion are mainly induced by calcium ions entering through voltage-dependent calcium channels, while tonic contractions are also maintained by receptor-operated channels. Ca2+-activated potassium channels can serve as a negative feedback factor in regulation of the amnion contractile responses.  相似文献   

6.
1. Preincubation with 1 or 2mM Ni2+ inhibited dose-dependently the ileal phasic response to K+ (60 mM) without appreciable effects on the tonic response. Ni2+ above 3mM inhibited the tonic response.2. Ni2+ inhibited the high affinity Ca2+ sites than the low affinity sites during K+ contraction.3. After treatment with Ni2+, the K+ response was fairly restored by a wash with normal medium. The nickel bound to the ileal cells was almost eliminated with the washing.4. This probably indicates that Ni2+ mainly inhibited the K+-induced phasic tension by reducing Ca2+ release rather than Ca2+ influx.  相似文献   

7.
Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca2+-activated K+ (SK) channel, SK3, promotes feedback regulation of myometrial Ca2+ and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mice (SK3T/T), in which SK3 is overexpressed and can be suppressed by oral administration of doxycycline (SK3T/T+Dox). We found SK3 protein in mouse myometrium, and this expression was substantially higher in SK3T/T mice and lower in SK3T/T+Dox mice compared with wild-type (WT) controls. Sustained contractions elicited by 60 mM KCl were not different among SK3T/T, SK3T/T+Dox, and WT mice. However, the rate of onset and magnitude of spontaneously occurring phasic contractions was muted significantly in isolated uterine strips from SK3T/T mice compared with those from WT mice. These spontaneous contractions were augmented greatly by blockade of SK channels with apamin or by suppression of SK3 expression. Phasic but not tonic contraction in response to oxytocin was depressed in uterine strips from SK3T/T mice, whereas suppression of SK3 channel expression or treatment with apamin promoted the predominance of large coordinated phasic events over tone. Spontaneous contractions and the phasic component of oxytocin contractions were blocked by nifedipine but not by cyclopiazonic acid. Our findings suggest that SK3 channels play an important role in regulating uterine function by limiting influx through L-type Ca2+ channels and disrupting the development of concerted phasic contractile events. uterus; Ca2+-activated K+ channel; doxycycline; mouse  相似文献   

8.
In the labouring uterus, millions of myocytes forming the complex geometrical structure of myometrium contract in synchrony to increase intrauterine pressure, dilate the cervix and eventually expel the foetus through the birth canal. The mechanisms underlying the precise coordination of contractions in human myometrium are not completely understood. In the present study, we have characterized the spatio‐temporal properties of tissue‐level [Ca2+]i transients in thin slices of intact human myometrium. We found that the waveform of [Ca2+]i transients and isotonic contractions recorded from thin slices was similar to the waveform of isometric contractions recorded from the larger strips in traditional organ bath experiments, suggesting that the spatio‐temporal information obtained from thin slices is representative of the whole tissue. By comparing the time course of [Ca2+]i transients in individual cells to that recorded from the bundles of myocytes we found that the majority of myocytes produce rapidly propagating long‐lasting [Ca2+]i transients accompanied by contractions. We also found a small number of cells showing desynchronized [Ca2+]i oscillations that did not trigger contractions. The [Ca2+]i oscillations in these cells were insensitive to nifedipine, but readily inhibited by the T‐type Ca2+ channel inhibitor NNC55‐0396. In conclusion, our data suggest that the spread of [Ca2+]i signals in human myometrium is achieved via propagation of long‐lasting action potentials. The propagation was fast when action potentials propagated along bundles of myocytes and slower when propagating between the bundles of uterine myocytes.  相似文献   

9.
In the myometrium SR Ca2+ depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca2+ sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca2+-ATPase (SERCA) inhibition on the temporal relationship between action potentials, Ca2+ transients and force. Simultaneous recording of electrical activity, calcium and force showed that SERCA inhibition, by cyclopiazonic acid (CPA 20 μM), caused time-dependent changes in excitability, most noticeably depolarization and elevations of baseline [Ca2+]i and force. At the onset of these changes there was a prolongation of the bursts of action potentials and a corresponding series of Ca2+ spikes, which increased the amplitude and duration of contractions. As the rise of baseline Ca2+ and depolarization continued a point was reached when electrical and Ca2+ spikes and phasic contractions ceased, and a maintained, tonic force and Ca2+ was produced. Lanthanum, a non-selective blocker of store-operated Ca2+ entry, but not the L-type Ca2+ channel blocker nifedipine (1–10 μM), could abolish the maintained force and calcium. Application of the agonist, carbachol, produced similar effects to CPA, i.e. depolarization, elevation of force and calcium. A brief, high concentration of carbachol, to cause SR Ca2+ depletion without eliciting receptor-operated channel opening, also produced these results. The data obtained suggest that in pregnant rats SR Ca2+ release is coupled to marked Ca2+ entry, via store operated Ca2+ channels, leading to depolarization and enhanced electrical and mechanical activity.  相似文献   

10.

Background/Aims

The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking.

Methodology/Principal Findings

Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina.

Conclusions/Significance

Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges.  相似文献   

11.
Noradrenaline caused a prompt but transient increase in the rate of45Ca2+ efflux from isolated rat islets of Langerhans perifused in Ca2+ depleted medium. The response was modest in size and was unaffected by isosmotic replacement of NaCl with choline chloride or by inclusion of 0.5 mM dibutyryl cAMP in the perifusion medium, suggesting that it was not mediated by Na+: Ca2+ exchange nor by lowered cAMP. Despite its effect on45Ca2+ efflux, noradrenaline treatment did not alter the kinetics of45Ca2+ efflux in response to the muscarinic agonist, carbamylcholine, nor did it change the magnitude of the response to this agent. Simultaneous introduction of 20 mM glucose with noradrenaline prevented a rise in45Ca2+ efflux and indeed resulted in inhibition of45Ca2+ efflux. The data suggest that noradrenaline does not directly activate the mechanisms which regulate Ca2+ extrusion from islets cells, and they do not support a primary role for the Ca2+ efflux response in mediating adrenergic inhibition of insulin secretion.  相似文献   

12.
l-Glutamic acid actively loaded into resealed brain synaptic membrane vesicles was rapidly released into the incubation medium following the introduction of KCl and CaCl2, or nigericin, or veratridine into the external medium. The KCl-induced release was enhanced by the presence of low (0.1 mM), extravesicular [Ca2+]. Neither the KCl-induced nor the veratridine-stimulated l-glutamate efflux were carrier-mediated processes. Finally, the KCl-stimulated l-glutamate efflux was dependent on the ratio of intra- to extravesicular [K+]. The observations described in this study were indicative of depolarization-induced l-glutamate release from isolated synaptic plasma membrane vesicles.  相似文献   

13.
To investigate the relationship between the oxytocin (OT) receptor (OTR) quantity and the contractile features systematically, we measured the mRNA expression levels of OTR and L-type Ca(2+) channel alpha(1C)-subunit (alpha(1C)) and examined the regulatory mechanisms of OT-induced phasic or tonic contractions of the longitudinal smooth muscles in mouse uteri. The mRNA expression of OTR in 19.0 G (19.0 days of gestation) was greater than those in nonpregnant phases, and that of alpha(1C) in estrus and 19.0 G was higher than in diestrus. OT-induced contractions sparsely occurred in diestrus. The OT-induced all-or-none-type phasic contractions at low concentrations were abolished by verapamil in both estrus and 19.0 G. OT-induced tonic contractions had similar pD(2) values in both estrus and 19.0 G. However, the magnitude in 19.0 G was much greater than that in estrus. The large tonic contractions also occurred in PGF(2alpha) receptor (FP) knockout mice in 19.0 G despite a small amount of OTR. Verapamil and Y-27632 partially inhibited the tonic contractions in 19.0 G. Cyclopiazonic acid-induced tonic contractions were reciprocally decreased with the increase in the OT-induced ones in 19.0 G. These results indicate that the phasic contractions are dependent on alpha(1C). The tonic contractions in 19.0 G are dependent on both Ca(2+) influxes via L-type Ca(2+) channels and store-operated Ca(2+) channels, and the force is augmented by the Rho signal pathway, which increases the Ca(2+) sensitivity. Thus the uterine contractions are mainly controlled by the modification of contractile signal machinery rather than simply by the OTR quantity.  相似文献   

14.
Phosphoinositide (PI) and calcium metabolism were studied in guinea pig cerebral cortex synaptosomes. Mass amounts of inositol and inositol monophosphates, and the levels of free intrasynaptosomal calcium ([Ca2+]i) were measured after KCl (60 mM), after a direct cholinergic agonist carbachol (CA, 1mM), and after their combination. Inositol, inositol-1-phosphate (Ins1P), inositol-4-phosphate (Ins4P) and [Ca2+]i were measured with and without 10 mM LiCl in the incubation medium. CA-induced cholinergic stimulation elevated synaptosomal Ins4P levels by 40% but did not affect Ins1P or [Ca2+]i. On the contrary, KCl elevated Ins1P by 50% and [Ca2+]i by 40% above the resting level, and decreased inositol by 20%, whereas no alterations in Ins4P occurred. CA did not modify the response of KCl, but KCl abolished the elevation of Ins4P by CA. LiCl attenuated KCl-induced elevation of Ins1P but amplified the CA-induced elevation of Ins4P. The elevation of presynaptic [Ca2+]i was accompanied by accumulation of Ins1P but not that of Ins4P. Hence, the present results suggest that presynaptic cholinergic stimulation and KCl-induced depolarization may activate different degradation pathways of inositolphosphate metabolism.  相似文献   

15.
Both dibutyryl cAMP and carbachol stimulated amylase are released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 μM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 μM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

16.
Inoptopic effect of yttrium acetate (Y3+) on myocardium of the marsh frog Rana ridibunda and its effect on ion transport across the inner mitochondrial membrane (IMM) of rat heart was studied. Y3+ was found to decrease the rate of heart contractions and to stimulate ion transport in the rat heart mitochondria in media with 10 mM glutamate and 2 mM malate. Presence of Y3+ induced inhibition of energy-dependent Ca2+ transport into mitochondria, which was expressed as a marked decrease of their swelling in the media containing 125 mM NH4NO3 and Ca2+ or 25 mM potassium acetate, 100 mM sucrose and Ca2+. It is suggested that the Y3+-induced decrease in rat muscle contractions is determined not only by direct suppressing effect of Y3+ on potential-modulated Ca2+-channels of pacemaker and contractile cardiomyocytes (CM), but also by its indirect effect on Ca2+-carrier in IMM. The data confirming that Y3+ activates energy-dependent K+ transport catalyzed by mitochondrial uniporter and blocks Ca2+-channels in the mitochondrial membrane are important for more complete understanding of mechanisms of the Y3+ action on vertebrates and human CM.  相似文献   

17.
Rho-kinase-dependent Ca2+ sensitization is an essential process for contraction of mammalian vascular smooth muscle but the information about its effects in non-mammalian vessels is scarce. We aimed to investigate, using the Rho-kinase inhibitor hydroxyfasudil, the potential role of the Rho-kinase pathway of Ca2+ sensitization in depolarization- and agonist-mediated contraction of chicken embryo (at day 19 of the 21 days of incubation) femoral arteries. Contraction elicited by KCl (125 mM) comprised two phases (phasic and tonic contraction), both of which were abolished in the absence of extracellular Ca2+. Hydroxyfasudil (10 μM) left the initial phasic component nearly intact but abolished the tonic component. Hydroxyfasudil also induced a marked impairment of the contractions elicited by phenylephrine (PE), the thromboxane A2 mimetic U46619, and endothelin-1. In contrast, inhibition of protein kinase C (PKC) by chelerythrine did not affect KCl- or PE-induced contractions, indicating lack of participation of PKC-mediated Ca2+ sensitization. Incubation under chronic hypoxia (15% O2 from day 0) impaired embryonic growth but did not significantly affect hydroxyfasudil-mediated relaxation. In summary, our findings are indicative of a role for Rho-kinase activity in depolarization- and agonist-induced force generation in chicken embryo femoral arteries.  相似文献   

18.
In addition to its well-known effects on parturition and lactation, oxytocin (OT) plays an important role in modulation of pain and nociceptive transmission. But, the mechanism of this effect is unclear. To address the possible role of OT on pain modulation at the peripheral level, the effects of OT on intracellular calcium levels ([Ca2+]i) in rat dorsal root ganglion (DRG) neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1- or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of OT on [Ca2+]i and role of the protein kinase C (PKC)-mediated pathway in OT effect were assessed. OT caused a significant increase in basal levels of [Ca2+]i after application at the doses of 30 nM (n?=?34, p?<?0.01), 100 nM (n?=?41, p?<?0.001) and 300 nM (n?=?46, p?<?0.001). The stimulatory effect of OT (300 nM) on [Ca2+]i was persistent in Ca2+-free conditions (n?=?56, p?<?0.01). Chelerythrine chloride, a PKC inhibitor, significantly reduced the OT-induced increase in [Ca2+]i (n?=?28, p?<?0.001). We demonstrated that OT activates intracellular calcium signaling in cultured rat primary sensory neurons in a dose- and PKC-dependent mechanism. The finding of the role of OT in peripheral pain modification may serve as a novel target for the development of new pharmacological strategies for the management of pain.  相似文献   

19.
《Cellular signalling》2014,26(5):1001-1010
Activation of the cyclic AMP (cAMP) pathway reduces bladder contractility. However, the role of phosphodiesterase (PDE) families in regulating this function is poorly understood. Here, we compared the contractile function of the cAMP hydrolyzing PDEs in neonatal rat bladder smooth myocytes. RT-PCR and Western blotting analysis revealed that several isoforms of PDE1–4 were expressed in neonatal rat bladder. While 8-methoxymethyl-3-isobutyl-1-methylxanthine (a PDE1 inhibitor) and BAY-60-7550 (a PDE2 inhibitor) had no effect on the carbachol-enhanced phasic contractions of bladder strips, cilostamide (Cil, a PDE3 inhibitor) and Ro-20-1724 (Ro, a PDE4 inhibitor) significantly reduced these contractions. This inhibitory effect of Ro was blunted by the PKA inhibitor H-89, while the inhibitory effect of Cil was strongly attenuated by the PKG inhibitor KT 5823. Application of Ro in single bladder smooth myocytes resulted in an increase in Ca2 + spark frequency but a decrease both in Ca2 + transients and in sarcoplasmic reticulum (SR) Ca2 + content. In contrast, Cil had no effect on these events. Furthermore, Ro-induced inhibition of the phasic contractions was significantly blocked by ryanodine and iberiotoxin. Taken together, PDE3 and PDE4 are the main PDE isoforms in maintaining the phasic contractions of bladder smooth myocytes, with PDE4 being functionally more active than PDE3. However, their roles are mediated through different mechanisms.  相似文献   

20.
In previous studies, nonlethal CdCl2 concentrations apparently inhibited basal Y-1 mouse adrenal tumor cell endogenous mitochondrial cholesterol conversion to pregnenolone. In addition, CdCl2 inhibited all agents stimulating both plasma membrane-dependent cAMP synthesis and 20-hydroxy-4-pregnen-3-one (20DHP) secretion. Bypassing the plasma membrane using dibutyryl-cAMP (dbcAMP) stimulated cytoplasmic cholesterol metabolism and 20DHP secretion in the presence of CdCl2. Since CdCl2 competed at metabolic steps requiring Ca2+ in other tissues, experiments were designed to examine Cd2+ competition with Ca2+ during steroidogenesis. Sets of cells incubated with either medium or adrenocorticotropin (ACTH) with or without CdCl2 were also treated with 0, 1.0, 5.0 or 10.0 mmol/L CaCl2 in the presence or absence of EGTA, a relatively specific Ca2+, but not Cd2+, chelating agent. Another experimental cell set incubated with either medium or ACTH, with or without CdCl2, was treated with or without 1 mmol/L A23187, an ionophore specifically facilitating extracellular Ca2+ transfer across plasma membranes. Besides determining Ca2+ involvement in steroidogenesis using steroid secretion as an endpoint, we directly measured Ca2+ concentrations using intracellular fura-2 fluorescence. Following loading with 2 mol/L fura-2, cells remained untreated or medium was infused with CdCl2, ACTH, ACTH/CdCl2 or ACTH followed after 50 s by CdCl2. Using Ca2+-supplemented media, we observed that Cd2+ inhibition of ACTH-stimulated 20DHP secretion was completely reversed. Standard Ca2+-containing medium supplemented with Ca2+ also enhanced maximally stimulated 20DHP secretion by ACTH. 20DHP secretion by ACTH-treated and ACTH/Cd2+-treated cells was only reduced by EGTA, when Ca2+ was not supplemented. The ionophore A23187 increased basal and ACTH-stimulated 20DHP secretion by Cd2+-treated cells, suggesting that extracellular Ca2+ resources may compete against Cd2+ effects on plasma membrane cAMP synthesis and on basal cholesterol metabolism by mitochondria. No time-dependent change in Ca2+ concentrations occurred within untreated cell suspensions. ACTH stimulation caused a 25 s burst in Ca2+ concentrations before returning to basal, steady-state levels. Cd2+ also stimulated intracellular fura-2 fluorescence. Untreated cell suspensions infused with Cd2+ exhibited a continuous rise in intracellular fluorescence. ACTH/CdCl2-treated cells exhibited a hyperbolic rise in intracellular fluorescence over the 300 s study period. Cells treated with Cd2+ 50 s after ACTH treatment initially exhibited the 25 s fluorescence burst followed by a Cd2+-induced hyperbolic rise in intracellular Cd2+. These fluorescence measurements suggested that cytoplasmic Ca2+ changes do not appear to be necessary for basal 20DHP synthesis and secretion; only a 25 s burst in intracellular Ca2+ is necessary to a slightly higher plateau level for stimulated 20DHP synthesis and secretion. Cd2+ freely enters the cell under basal conditions and Cd2+ entry is accelerated by ACTH stimulation. Data were consistent with Ca2+ being required for optimal stimulated steroid production and Cd2+ probably competing with Ca2+ during basal mitochondrial cholesterol metabolism and plasma membrane ACTH-stimulated cAMP generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号