共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucoamylase, which catalyses the hydrolysis of the α-1,4 glycosidic bonds of starch, is an important industrial enzyme used in starch enzymatic saccharification. In this study, a glucoamylase gene from Aspergillus awamori, under the control of the promoter of seed storage protein Gt1, was introduced into rice by Agrobacterium-mediated transformation. Significant glucoamylase activity was detected specifically in the seeds but not other tissues of the transgenic rice lines. The highest enzymatic activity was found in the transgenic line Bg17-2, which was estimated to have about 500 units per gram of seeds (one unit is defined as the amount of enzyme that produces 1 μmol of reducing sugar in 1 min at 60 °C using soluble starch as substrate). The optimum pH for the activity of the rice produced enzyme is 5.0–5.5, and the optimum temperature is around 60 °C. One part of this transgenic glucoamylase rice seed flour fully converted 25 parts of corn starch pre-liquefied by an α-amylase also produced by a transgenic rice into glucose in 16 h incubation. This study suggests that this hydrolysis enzyme may substitute commercial fermentation enzymes for industrial starch conversion. 相似文献
3.
A rice diacylglycerol kinase (DGK) gene, OsBIDK1, which encodes a 499-amino acid protein, was cloned and characterized. OsBIDK1 contains a conserved DGK domain, consisting of a diacylglycerol kinase catalytic subdomain and a diacylglycerol kinase accessory subdomain. Expression of OsBIDK1 in rice seedlings was induced by treatment with benzothiadiazole (BTH), a chemical activator of the plant defense response, and by infection with Magnaporthe grisea, causal agent of blast disease. In BTH-treated rice seedlings, expression of OsBIDK1 was induced earlier and at a higher level than in water-treated control seedlings after inoculation with M. grisea. Transgenic tobacco plants that constitutively express the OsBIDK1 gene were generated and disease resistance assays showed that overexpression of OsBIDK1 in transgenic tobacco plants resulted in enhanced resistance against infection by tobacco mosaic virus and Phytophthora parasitica var. nicotianae. These results suggest that OsBIDK1 may play a role in disease resistance responses. 相似文献
4.
cDNAs encoding three proteins from barley ( Hordeum vulgare ), a class-II chitinase (CHI), a class-II β-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani , which infects a range of plant species including tobacco. To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated. Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/ CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack when compared with the protection levels obtained with corresponding isogenic lines expressing a single barley transgene to a similar level. The data indicate synergistic protective interaction of the co-expressed anti-fungal proteins in vivo . 相似文献
5.
The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, is the most widely distributed and destructive early season insect pest of rice, Oryza sativa L. worldwide. The rice plants were transformed with cryIIIA insecticidal gene as well as with the bar gene coding phosphinothricin acetyltransferase. CryIIIA gene under the control of a modified RCg2 promoter drives the insect-toxic gene expression in roots and/or leaves. The cryIIIA gene was transferred into O. sativa L. cv. Nakdong by Agrobacterium-mediated transformation. Stable integration of the transgene was confirmed in putative transformed rice by Southern blot analysis. The expression of the cryIIIA toxin gene in the roots of transgenic rice plants was verified by RT-PCR and immunoblot analysis. Transgenic rice plants were also evaluated for resistance to natural infestations of the RWW under field conditions between 2007 and 2011. The transgenic Btt8R and Btt12R lines reduced the growth rate of RWW larvae and pupae populations compared with non-transgenic control plants by approximately 52 and 58 %, respectively. To further examine the efficacy of the RWW bioassay, we used pots and performed experiments in trays and under field conditions in 2012. The Btt12R line reduced the total populations of RWW larvae and pupae in trays and under field conditions by 56 and 45 %, respectively. The bioassay experiments conducted over 6 years, showed a significant reduction rate of RWW larvae and pupae populations demonstrating that the cryIIIA gene in transgenic rice confers resistance to RWW. 相似文献
6.
. The gene encoding mature trichosanthin, a type I ribosome-inactivating protein isolated from the tuber of Trichosanthes kirilowii Maximowicz, was transformed into calli of rice ( Oryza sativa L.) by bombardment. Transgenic rice plants were obtained and confirmed by Southern and Western blot analysis. When transgenic rice plants expressing trichosanthin were inoculated with the spores of Pyricularia oryzae, a major rice fungus blast pathogen, the lesions on leaves were much less severe, and the seedling survival rate and whole plant weight were higher than those of control plants with the gus gene. The presented data demonstrate a novel, potential role of trichosanthin in antifungal protection in transgenic plants. 相似文献
7.
Drought and salt stresses are two major factors that lower plant productivity. Transgenic approaches offer powerful means to better understand and then minimize loss of yield due to these abiotic stresses. In this study, we have generated transgenic rice plants expressing a wheat LEA group 2 protein (PMA80) gene, and separately the wheat LEA group 1 protein (PMA1959) gene. Molecular analysis of the transgenic plants revealed the stable integration of the transgenes. Immunoblot analysis showed the presence of the LEA group 2 protein (39 kDa) and the LEA group 1 protein (25 kDa) in most of the plant lines. Second-generation transgenic plants were subjected to dehydration or salt stress. The results showed that accumulation of either PMA80 or PMA1959 correlates with increased tolerance of transgenic rice plants to these stresses. 相似文献
8.
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat ( Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T 1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T 1 plants. Resistance to stripe rust in transgenic T 2 and T 3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27–36 %) was recorded for transgenic T 2 and T 3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat. 相似文献
9.
Thanatin is an antimicrobial peptide with a strong and wide-ranging antimicrobial spectrum, including certain species of fungi
and Gram-negative and Gram-positive bacteria. To evaluate the application of thanatin to the generation of disease-resistant
plants, we introduced a synthetic thanatin gene into rice. Several transformants that expressed the introduced gene showed
significant level of antimicrobial activity. The substances showing antimicrobial activity were partially purified from these
transformants and their properties were determined. The molecule with characteristics similar to those of native thanatin
on the elution pattern in HPLC analysis had an identical molecular mass to that of native molecule. It should also be noted
that the transformant acquired a sufficient level of resistance to the rice blast fungus, Magnaporthe oryzae, presumably due to the repressive activity of thanatin to its initial stage of infection. This result demonstrates that thanatin
has antifungal activity for M. oryzae and that the introduction of the thanatin gene into rice is effective in generating a plant resistant to rice blast disease. 相似文献
10.
The wilt diseases caused by Verticillium dahliae and Fusarium oxysporum are the major diseases of eggplant ( Solanum melongena L.). In order to generate transgenic resistance against the wilt diseases, Agrobacterium-mediated gene transfer was performed to introduce alfalfa glucanase gene encoding an acidic glucanase into eggplant using neomycin phosphotransferase ( npt-II) gene as a plant selection marker. The transgene integration into eggplant genome was confirmed by Polymerase chain reaction (PCR) and Southern blot analysis and transgene expression by the glucanase activity and western blot analysis. The selected transgenic lines were challenged with V. dahliae and F. oxysporum under in vitro and in vivo growth conditions, and transgenic lines showed enhanced resistance against the wilt-causing fungi with a delay of 5–7 days in the disease development as compared to wild-type plants. 相似文献
11.
Three cDNAs encoding the antifungal protein Ag-AFP from the fungus Aspergillus giganteus, a barley class II chitinase and a barley type I RIP, all regulated by the constitutive Ubiquitin1 promoter from maize, were expressed in transgenic wheat. In 17 wheat lines, stable integration and inheritance of one of the three transgenes has been demonstrated over four generations. The formation of powdery mildew (Erysiphe graminis f. sp. tritici) or leaf rust (Puccinia recondita f. sp. tritici) colonies was significantly reduced on leaves from afp or chitinase II- but not from rip I-expressing wheat lines compared with non-transgenic controls. The increased resistance of afp and chitinase II lines was dependent on the dose of fungal spores used for inoculation. Heterologous expression of the fungal afp gene and the barley chitinase II gene in wheat demonstrated that colony formation and, thereby, spreading of two important biotrophic fungal diseases is inhibited approximately 40 to 50% at an inoculum density of 80 to 100 spores per cm2. 相似文献
13.
The hypersensitive response (HR) is a form of programmed cell death of plant cells occurring in the local region surrounding pathogen infection site to prevent the spread of infection by pathogens. Bax, a mammalian pro-apoptotic member of Bcl-2 family, triggers HR-like cell death when expressed in plants. However, constitutive expression of the Bax gene negatively affects plant growth and development. The Xa10 gene in rice (Oryza sativa) is an executor resistance (R) gene that confers race-specific disease resistance to Xanthomonas oryzae pv. oryzae strains harboring TAL effector gene AvrXa10. In this study, the Xa10 promoter was used to regulate heterologous expression of the Bax gene from mouse (Mus musculus) in Nicotiana benthamiana and rice. Cell death was induced in N. benthamiana after co-infiltration with the PXa10:Bax:TXa10 gene and the PPR1:AvrXa10:TNos gene. Transgenic rice plants carrying the PXa10:Bax:TXa10 gene conferred specific disease resistance to Xa10-incompatible X. oryzae pv. oryzae strain PXO99A(pHM1AvrXa10), but not to the Xa10-compatible strain PXO99A(pHM1). The resistance specificity was confirmed by the AvrXa10-dependent induction of the PXa10:Bax:TXa10 gene in transgenic rice. Our results demonstrated that the inducible expression of the Bax gene in transgenic rice was achieved through the control of the executor R gene promoter and the heterologous expression of the pro-apoptosis regulator gene in rice conferred disease resistance to X. oryzae pv. oryzae. 相似文献
15.
Summary Mature seed-derived callus from an elite Chinese japonica rice cv. Ewan 5 was cotransformed with two plasmids, pWRG1515 and
pRSSGNAl, containing the selectable marker hygromycin phosphotransferase gene ( hpt), the reporter β-glucuronidase gene ( gusA) and the snowdrop ( Galanthus nivalis) lectin gene ( gna) via particle bombardment. Thirty-five independent transgenic rice plants were regenerated from 177 bombarded calluses. Eighty-three
percent of the transgenic plants contained all three genes, as revealed by Southern blot analysis. Western blot analysis revealed
that 23 out of 29 gna-containing transgenic plants expressed Galanthus nivalis agglutinin (GNA) (79%) at various levels, with the highest expression being approximately 0.5% of total soluble protein.
Genetic analysis confirmed Mendelian segregation of all three transgenes ( gna, hpt and gusA) in the R2 progeny. Amongst the R2 generation two independent homozygous lines were identified that expressed all three transgenes.
Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to rice brown planthopper
( Nilaparvata lugens, BPH) by decreasing the survival, overall fecundity of BPH, retarding development, and decreasing the feeding of BPH. These
BPH-resistant lines have been incorporated into a rice insect resistance breeding program. This is the first report that homozygous
transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis-based selection, conferred
enhanced resistance to BPH. 相似文献
16.
A defensive role against insect attack has been traditionally attributed to plant protease inhibitors. Here, evidence is described of the potential of a plant protease inhibitor, the potato carboxypeptidase inhibitor (PCI), to provide resistance to fungal pathogens when expressed in rice as a heterologous protein. It is shown that rice plants constitutively expressing the pci gene exhibit resistance against the economically important pathogens Magnaporthe oryzae and Fusarium verticillioides . A M. oryzae carboxypeptidase was purified by affinity chromatography and further characterized by mass spectrometry. This fungal carboxypeptidase was found to be a novel carboxypeptidase B which was fully inhibited by PCI. Overall, the results indicate that PCI exerts its antifungal activity through the inhibition of this particular fungal carboxypeptidase B. Although pci confers protection against fungal pathogens in transgenic rice, a significant cost in insect resistance is observed. Thus, the weight gain of larvae of the specialist insect Chilo suppressalis (striped stem borer) and the polyphagous insect Spodoptera littoralis (Egyptian cotton worm) fed on pci rice is significantly larger than that of insects fed on wild-type plants. Homology-based modelling revealed structural similarities between the predicted structure of the M. oryzae carboxypeptidase B and the crystal structure of insect carboxypeptidases, indicating that PCI may function not only as an inhibitor of fungal carboxypeptidases, but also as an inhibitor of insect carboxypeptidases. The potential impact of the pci gene in terms of protection against fungal and insect diseases is discussed. 相似文献
17.
Wheat grain is sold based upon several physiochemical characteristics, one of the most important being grain texture. Grain texture in wheat directly affects many end use qualities such as milling yield, break flour yield, and starch damage. The hardness (Ha) locus located on the short arm of chromosome 5D is known to control grain hardness in wheat. This locus contains the puroindoline A ( pina) and puroindoline B ( pinb) genes. All wheats to date that have mutations in pina or pinb are hard textured, while wheats possessing both the soft type pina-D1a and pinb-D1a sequences are soft. Furthermore, it has been shown that complementation of the pinb-D1b mutation in hard spring wheat can restore a soft phenotype. Here, our objective was to identify and characterize the effect the puroindoline genes have on grain texture independently and together. To accomplish this we transformed a hard red spring wheat possessing a pinb-D1b mutation with soft type pina and pinb, creating transgenic isolines that have added pina, pinb, or pina and pinb. Northern blot analysis of developing control and transgenic lines indicated that grain hardness differences were correlated with the timing of the expression of the native and transgenically added puroindoline genes. The addition of PINA decreased grain hardness less than the reduction seen with added PINB. Seeds from lines having more soft type PINB than PINA were the softest. Friabilin abundance was correlated with the presence of both soft type PINA and PINB and did not correlate well with total puroindoline abundance. The data indicates that PINA and PINB interact to form friabilin and together affect wheat grain texture.Communicated by J. Dvorak 相似文献
18.
水稻条纹叶枯病是当前粳稻主产区危害最严重的病害之一,而品种抗病性的利用则被公认为是病害综合防治的根本策略.本文从抗性鉴定方法、抗性资源筛选和发掘、抗性遗传规律及抗病基因定位和抗性品种选育与抗性转基因工程4个方面,对水稻品种条纹叶枯病抗性的研究进展进行了简要综述,以期为水稻抗条纹叶枯病的育种提供参考.同时对水稻品种条纹叶枯病抗性研究的现存问题与今后的研究方向进行了讨论. 相似文献
19.
We examined whether the expression of wheat catalase (EC 1.11.1.6) cDNA in transgenic rice ( Oryza sativa L.) could enhance tolerance against low temperature injury. Transgenic rice plants expressing wheat CAT protein showed an increase of activities in leaves at 25°C, 2- to 5-fold that in non-transgenic rice. At 5°C, catalase activities were about 4–15 times higher than those in non-transgenic rice were. A comparison of damage observed in leaves as they withered due to chilling at 5°C showed that transgenic rice displayed an increased capability to resist low temperature stress. The exposure of these plants to low temperature at 5°C for 8 days resulted in decreased catalase activities in leaves at 25°C, but the transgenic plants indicated 4 times higher residual catalase activities than those of non-transgenic ones. The concentration of H 2O 2 in leaves was kept lower in transgenic rice than that of the control plants during the 8 days chilling. These results suggest that the improved tolerance against low temperature stress in genetically engineered rice plants be attributed to the effective detoxification of H 2O 2 by the enhanced catalase activities. 相似文献
|