首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceroid lipofuscinosis neuronal 5 (CLN5) is a member of a family of proteins that are linked to neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, known commonly as Batten disease, affects all ages and ethnicities and is currently incurable. The precise function of CLN5, like many of the NCL proteins, remains to be elucidated. In this study, we report the localization, molecular function, and interactome of Cln5, the CLN5 homolog in the social amoeba Dictyostelium discoideum. Residues that are glycosylated in human CLN5 are conserved in the Dictyostelium homolog as are residues that are mutated in patients with CLN5 disease. Dictyostelium Cln5 contains a putative signal peptide for secretion and we show that the protein is secreted during growth and starvation. We also reveal that both Dictyostelium Cln5 and human CLN5 are glycoside hydrolases, providing the first evidence in any system linking a molecular function to CLN5. Finally, immunoprecipitation coupled with mass spectrometry identified 61 proteins that interact with Cln5 in Dictyostelium. Of the 61 proteins, 67% localize to the extracellular space, 28% to intracellular vesicles, and 20% to lysosomes. A GO term enrichment analysis revealed that a majority of the interacting proteins are involved in metabolism, catabolism, proteolysis, and hydrolysis, and include other NCL-like proteins (e.g., Tpp1/Cln2, cathepsin D/Cln10, cathepsin F/Cln13) as well as proteins linked to Cln3 function in Dictyostelium (e.g., AprA, CfaD, CadA). In total, this work reveals a CLN5 homolog in Dictyostelium and further establishes this organism as a complementary model system for studying the functions of proteins linked to NCL in humans.  相似文献   

2.
Mutations in CLN5 cause neuronal ceroid lipofuscinosis (NCL), a currently untreatable neurodegenerative disorder commonly known as Batten disease. Several genetic models have been generated to study the function of CLN5, but one limitation has been the lack of a homolog in lower eukaryotic model systems. Our previous work revealed a homolog of CLN5 in the social amoeba Dictyostelium discoideum. We used a Cln5-GFP fusion protein to show that the protein is secreted and functions as a glycoside hydrolase in Dictyostelium. Importantly, we also revealed this to be the molecular function of human CLN5. In this study, we generated an antibody against Cln5 to show that the endogenous protein is secreted during the early stages of Dictyostelium development. Like human CLN5, the Dictyostelium homolog is glycosylated and requires this post-translational modification for secretion. Cln5 secretion bypasses the Golgi complex, and instead, occurs via an unconventional pathway linked to autophagy. Interestingly, we observed co-localization of Cln5 and GFP-Cln3 as well as increased secretion of Cln5 and Cln5-GFP in cln3? cells. Loss of Cln5 causes defects in adhesion and chemotaxis, which intriguingly, has also been reported for Dictyostelium cells lacking Cln3. Finally, autofluorescence was detected in cln5? cells, which is consistent with observations in mammalian systems. Together, our data support a function for Cln5 during the early stages of multicellular development, provide further evidence for the molecular networking of NCL proteins, and provide insight into the mechanisms that may underlie CLN5 function in humans.  相似文献   

3.
4.
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.  相似文献   

5.
The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3 cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3 cells was precocious and cln3 slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3 cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3 cells, strongly supports the use of this new model for JNCL research.  相似文献   

6.
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3? cells displayed defects in cytokinesis. The recovery of cln3? cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3? cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3? cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.  相似文献   

7.
Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL), caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6 nclf/nclf cerebellar cells and compared them to wild-type and CbCln3 Δex7/8/Δex7/8 cerebellar cells. CbCln6 nclf/nclf cells and CbCln3 Δex7/8/Δex7/8 cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6 nclf/nclf cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6 nclf/nclf and CbCln3 Δex7/8/Δex7/8 cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3 Δex7/8 and Cln6 nclf mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival.  相似文献   

8.
Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive lysosomal storage disorders. Mutations in as many as 13 genes give rise to ∼10 variants of NCL, all with overlapping clinical symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations in CLN6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring Cln6 mutant (Cln6nclf) mouse line to validate its utility for translational research. We demonstrate that this Cln6nclf mutation leads to deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these findings highlight the behavioral and pathological similarities between the Cln6nclf mouse model and human NCL patients, validating this model as a reliable format for screening potential therapeutics.  相似文献   

9.
The late-infantile-onset forms are the most genetically heterogeneous group among the autosomal recessively inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses (NCLs). The Turkish variant was initially considered to be a distinct genetic entity, with clinical presentation similar to that of other forms of late-infantile-onset NCL (LINCL), including age at onset from 2 to 7 years, epileptic seizures, psychomotor deterioration, myoclonus, loss of vision, and premature death. However, Turkish variant LINCL was recently found to be genetically heterogeneous, because mutations in two genes, CLN6 and CLN8, were identified to underlie the disease phenotype in a subset of patients. After a genomewide scan with single-nucleotide-polymorphism markers and homozygosity mapping in nine Turkish families and one Indian family, not linked to any of the known NCL loci, we mapped a novel variant LINCL locus to chromosome 4q28.1-q28.2 in five families. We identified six different mutations in the MFSD8 gene (previously denoted "MGC33302"), which encodes a novel polytopic 518-amino acid membrane protein that belongs to the major facilitator superfamily of transporter proteins. MFSD8 is expressed ubiquitously, with several alternatively spliced variants. Like the majority of the previously identified NCL proteins, MFSD8 localizes mainly to the lysosomal compartment. However, the function of MFSD8 remains to be elucidated. Analysis of the genome-scan data suggests the existence of at least three more genes in the remaining five families, further corroborating the great genetic heterogeneity of LINCLs.  相似文献   

10.
Infantile and juvenile neuronal ceroid lipofuscinosis (NCLs) are progressive neurodegenerative disorders of childhood with distinct ages of clinical onset, but with a similar pathological outcome. Infantile and juvenile NCL are inherited in an autosomal recessive manner due to mutations in the CLN1 and CLN3 genes, respectively. Recently developed Cln1- and Cln3-knockout mouse models share similarities in pathology with the respective human disease. Using oligonucleotide arrays we identified reproducible changes in gene expression in the brains of both 10-week-old Cln1- and Cln3-knockout mice as compared to wild-type controls, and confirmed changes in levels of several of the cognate proteins by immunoblotting. Despite the similarities in pathology, the two mutations affect the expression of different, non-overlapping sets of genes. The possible significance of these changes and the pathological mechanisms underlying NCL diseases are discussed.  相似文献   

11.
Mutations in the CLN3 gene cause a fatal neurodegenerative disorder: juvenile CLN3 disease, also known as juvenile Batten disease. The two most commonly utilized mouse models of juvenile CLN3 disease are Cln3-knockout (Cln3−/−) and Cln3Δex7/8-knock-in mice, the latter mimicking the most frequent disease-causing human mutation. To determine which mouse model has the most pronounced neurological phenotypes that can be used as outcome measures for therapeutic studies, we compared the exploratory activity, motor function and depressive-like behavior of 1-, 3- and 6-month-old Cln3−/− and Cln3Δex7/8-knock-in mice on two different genetic backgrounds (129S6/SvEv and C57BL/6J). Although, in many cases, the behavior of Cln3−/− and Cln3Δex7/8 mice was similar, we found genetic-background-, gender- and age-dependent differences between the two mouse models. We also observed large differences in the behavior of the 129S6/SvEv and C57BL/6J wild-type strains, which highlights the strong influence that genetic background can have on phenotype. Based on our results, Cln3−/− male mice on the 129S6/SvEv genetic background are the most appropriate candidates for therapeutic studies. They exhibit motor deficits at 1 and 6 months of age in the vertical pole test, and they were the only mice to show impaired motor coordination in the rotarod test at both 3 and 6 months. Cln3−/− males on the C57BL/6J background and Cln3Δex7/8 males on the 129S6/SvEv background also provide good outcome measures for therapeutic interventions. Cln3−/− (C57BL/6J) males had serious difficulties in climbing down (at 1 and 6 months) and turning downward on (at 1, 3 and 6 months) the vertical pole, whereas Cln3Δex7/8 (129S6/SvEv) males climbed down the vertical pole drastically slower than wild-type males at 3 and 6 months of age. Our study demonstrates the importance of testing mouse models on different genetic backgrounds and comparing males and females in order to find the most appropriate disease model for therapeutic studies.KEY WORDS: Juvenile neuronal ceroid lipofuscinosis, Batten disease, CLN3, Cln3−/− mouse model, Cln3Δex7/8-knock-in mouse model, 129S6/SvEv, C57BL/6J  相似文献   

12.
Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, refers to a group of severe neurodegenerative disorders that primarily affect children. The most common subtype of the disease is caused by loss-of-function mutations in CLN3, which is conserved across model species from yeast to human. The precise function of the CLN3 protein is not known, which has made targeted therapy development challenging. In the social amoeba Dictyostelium discoideum, loss of Cln3 causes aberrant mid-to-late stage multicellular development. In this study, we show that Cln3-deficiency causes aberrant adhesion and aggregation during the early stages of Dictyostelium development. cln3? cells form ~30% more multicellular aggregates that are comparatively smaller than those formed by wild-type cells. Loss of Cln3 delays aggregation, but has no significant effect on cell speed or cAMP-mediated chemotaxis. The aberrant aggregation of cln3? cells cannot be corrected by manually pulsing cells with cAMP. Moreover, there are no significant differences between wild-type and cln3? cells in the expression of genes linked to cAMP chemotaxis (e.g., adenylyl cyclase, acaA; the cAMP receptor, carA; cAMP phosphodiesterase, pdsA; g-protein α 9 subunit, gpaI). However, during this time in development, cln3? cells show reduced cell-substrate and cell-cell adhesion, which correlate with changes in the levels of the cell adhesion proteins CadA and CsaA. Specifically, loss of Cln3 decreases the intracellular level of CsaA and increases the amount of soluble CadA in conditioned media. Together, these results suggest that the aberrant aggregation of cln3? cells is due to reduced adhesion during the early stages of development. Revealing the molecular basis underlying this phenotype may provide fresh new insight into CLN3 function.  相似文献   

13.
Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1 A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function.KEY WORDS: Neuronal ceroid lipofuscinosis, Batten disease, TPP1, Tripeptidyl peptidase 1, Dictyostelium  相似文献   

14.
Late-infantile ceroid-lipofuscinosis (CLN2) is an autosomal recessively inherited, neurodegenerative disease in humans. The CLN2 locus has been mapped to Chromosome (Chr) 11p15, and its sequence and genomic organization have recently been reported. In the present study, the cDNA sequence, exon/intron organization, and chromosomal localization of a mouse ortholog of the CLN2 gene are described. The mouse cDNA contains an open reading frame that predicts a protein product of 562 amino acids. The mouse and human coding regions are 86% and 88% identical at the nucleic acid and amino acid levels, respectively. One less codon appears in the mouse cDNA when compared with the human ortholog. The mouse gene (Cln2) spans more than 6 kb and consists of 13 exons separated by introns ranging in size from 111 to 1259 bp. Length polymorphism in an (AC)n microsatellite in intron 3 of the mouse Cln2 gene was used to perform segregation analysis with The Jackson Laboratory DNA Panel Mapping Resource. On the basis of this analysis, the Cln2 gene was localized to a region of mouse Chr 7 that corresponds to human Chr 11p15. Characterization of the mouse Cln2 gene will facilitate generation of a mouse model for late-infantile ceroid-lipofuscinosis by gene targeting and identification of functionally important regions of the Cln2 protein. Received: 25 May 1999 / Accepted: 22 July 1999  相似文献   

15.
Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.  相似文献   

16.
17.
The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα), where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adaptation to fasting, we identified Major facilitator superfamily domain-containing protein 2a (Mfsd2a) as a fasting-induced gene regulated by both PPARα and glucagon signaling in the liver. MFSD2A is a cell-surface protein homologous to bacterial sodium-melibiose transporters. Hepatic expression and turnover of MFSD2A is acutely regulated by fasting/refeeding, but expression in the brain is constitutive. Relative to wildtype mice, gene-targeted Mfsd2a knockout mice are smaller, leaner, and have decreased serum, liver and brown adipose triglycerides. Mfsd2a knockout mice have normal liver lipid metabolism but increased whole body energy expenditure, likely due to increased β-oxidation in brown adipose tissue and significantly increased voluntary movement, but surprisingly exhibited a form of ataxia. Together, these results indicate that MFSD2A is a nutritionally regulated gene that plays myriad roles in body growth and development, motor function, and lipid metabolism. Moreover, these data suggest that the ligand(s) that are transported by MFSD2A play important roles in these physiological processes and await future identification.  相似文献   

18.
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene, which encodes for a putative lysosomal transmembrane protein with thus far undescribed structure and function. Here we investigate the membrane topology of human CLN3 protein with a combination of advanced molecular cloning, spectroscopy, and in silico computation. Using the transposomics cloning method we first created a library of human CLN3 cDNA clones either with a randomly inserted eGFP, a myc-tag, or both. The functionality of the clones was evaluated by assessing their ability to revert a previously reported lysosomal phenotype in immortalized cerebellar granular cells derived from Cln3 Δex7/8 mice (CbCln3 Δex7/8). The double-tagged clones were expressed in HeLa cells, and FRET was measured between the donor eGFP and an acceptor DyLight547 coupled to a monoclonal α-myc antibody to assess their relative membrane orientation. The data were used together with previously reported experimental data to compile a constrained membrane topology model for hCLN3 using TOPCONS consensus membrane prediction algorithm. Our model with six transmembrane domains and cytosolic N- and C-termini largely agrees with those previously suggested but differs in terms of the transmembrane domain positions as well as in the size of the luminal loops. This finding improves understanding the function of the native hCLN3 protein.  相似文献   

19.
The neuronal ceroid lipofuscinoses (NCLs) are a group of autosomal recessive neurodegenerative diseases characterized by the accumulation of autofluorescent lipopigment in various tissues and by progressive cell death in the brain and retina. The gene for variant late-infantile NCL (vLINCL), CLN6, was previously mapped to chromosome 15q21-23 and is predicted to be orthologous to the genes underlying NCL in nclf mice and in South Hampshire and Merino sheep. The gene underlying this disease has been identified with six different mutations found in affected patients and with a 1-bp insertion in the orthologous Cln6 gene in the nclf mouse. CLN6 encodes a novel 311-amino acid protein with seven predicted transmembrane domains, is conserved across vertebrates and has no homologies with proteins of known function. One vLINCL mutation, affecting a conserved amino acid residue within the predicted third hydrophilic loop of the protein, has been identified, suggesting that this domain may play an important functional role.  相似文献   

20.
Neuronal ceroid lipofuscinoses (NCLs) are a group of genetic childhood-onset progressive brain diseases characterized by a decline in mental and motor capacities, epilepsy, visual loss and premature death. Using patch clamp, fluorescence imaging and caged Ca2+ photolysis, we evaluated the mechanisms of neuronal Ca2+ clearance in Cln8mnd mice, a model of the human NCL caused by mutations in the CLN8 gene. In Cln8mnd hippocampal slices, Ca2+ clearance efficiency in interneurons and, to some extent, principal neurons declined with age. In cultured Cln8mnd hippocampal neurons, clearance of large Ca2+ loads was inefficient due to impaired mitochondrial Ca2+ uptake. In contrast, neither Ca2+ uptake by sarco/endoplasmic reticulum Ca2+ ATPase, nor Ca2+ extrusion through plasma membrane was affected by the Cln8 mutation. Excitotoxic glutamate challenge caused Ca2+ deregulation more readily in Cln8mnd than in wt neurons. We propose that neurodegeneration in human CLN8 disorders is primarily caused by reduced mitochondrial Ca2+ buffering capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号