首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

3.
Much interest exists in the extent to which constant versus fluctuating temperatures affect thermal performance traits and their phenotypic plasticity. Theory suggests that effects should vary with temperature, being especially pronounced at more extreme low (because of thermal respite) and high (because of Jensen's inequality) temperatures. Here we tested this idea by examining the effects of constant temperatures (10 to 30 °C in 5 °C increments) and fluctuating temperatures (means equal to the constant temperatures, but with fluctuations of ±5 °C) temperatures on the adult (F2) phenotypic plasticity of three thermal performance traits – critical thermal minimum (CTmin), critical thermal maximum (CTmax), and upper lethal temperature (ULT50) in ten species of springtails (Collembola) from three families (Isotomidae 7 spp.; Entomobryidae 2 spp.; Onychiuridae 1 sp.). The lowest mean CTmin value recorded here was -3.56 ± 1.0 °C for Paristoma notabilis and the highest mean CTmax was 43.1 ± 0.8 °C for Hemisotoma thermophila. The Acclimation Response Ratio for CTmin was on average 0.12 °C/°C (range: 0.04 to 0.21 °C/°C), but was much lower for CTmax (mean: 0.017 °C/°C, range: -0.015 to 0.047 °C/°C) and lower also for ULT50 (mean: 0.05 °C/°C, range: -0.007 to 0.14 °C/°C). Fluctuating versus constant temperatures typically had little effect on adult phenotypic plasticity, with effect sizes either no different from zero, or inconsistent in the direction of difference. Previous work assessing adult phenotypic plasticity of these thermal performance traits across a range of constant temperatures can thus be applied to a broader range of circumstances in springtails.  相似文献   

4.
A fibrinolytic protease secreting producing Bacillus amyloliquefaciens strain KJ10 was initially screened from the fermented soybean. Maximum productivity was obtained in the culture medium after 40 h incubation, 34 °C incubation temperature at pH 8.0. Fibrinolytic protease production was enhanced in the culture medium with 1% sucrose (3712 ± 52 U/mL), 1% (w/v) yeast extract (3940 ± 28 U/mL) and 0.1% MgSO4 (3687 ± 38 U/mL). Enzyme was purified up to 22.9-fold with 26%recovery after Q-Sepharose HP column chromatography. After three steps purification, enzyme activity was 1606U/mg and SDS-PAGE analysis revealed 29 kDa protein and enzyme band was detected by zymograpy. Enzyme was highly active at pH 8.0, at wide temperature ranges (40 °C ? 55 °C) and was activated by Mn2+ (102 ± 3.1%) and Mg2+ (101.4 ± 2.9%) ions. The purified fibrinolytic enzyme was highly specific against N-Suc-Ala-Ala-Pro-Phe-pNA (189 mmol/min/mL) and clot lytic activity reached 28 ± 1.8% within 60 minin vitro. The purified fibrinolytic enzyme showed least erythrocytic lysis activity confirmed safety to prevent various health risks, including hemolytic anemia. Based on this study, administration of fibrinolytic enzyme from B. amyloliquefaciens strain KJ10 is safe for clinical applications.  相似文献   

5.
《Journal of Asia》2020,23(1):186-195
The effects of temperature on developmental rate of Rhyncaphytoptus ficifoliae Keifer (Diptilomiopidae) were determined at six constant temperatures (17, 20, 25, 30, 33 and 36 °C) on fig leaves. The total developmental time of females decreased as temperature increased from 17 (21.62 days) to 33 °C (6.02 days), and then increased at 36 °C (6.47 days). Using the ordinary and Ikemoto and Takai (2000) linear models the estimated lower temperature thresholds (Tmin) for total developmental time of females were 10.78 and 10.37 °C and the constant temperatures (k) were 140.25 and 144.78°-days (DD), respectively. Data also were fitted to SSI nonlinear temperature-dependent model. The estimated TL, intrinsic optimum temperature (TФ) and Th for total immature stages of females by SSI model were 11.11, 23.72 and 37.98 °C, respectively. With use of the obtained data from rearing R. ficifoliae under constant temperatures in laboratory and temperature data in Khorramabad region in 2017, the real developmental rate of this mite in natural conditions was described. The highest (100%) and lowest values (51.67%) of survival rate for immature stages were found at 25 and 36 °C, respectively. The presented information could be used to predict the population dynamics of main pest R. ficifoliae for an effective management.  相似文献   

6.
The developmental rates of various life stages ofRhagoletis completa Cresson (Diptera: Tephritidae) were determined in the laboratory at seven different constant temperatures: 8, 12, 16, 20, 24, 28, and 32±1°C, RH 80±10%, photoperiod L 16∶D8. Preoviposition developmental rate was fastest at 28°C (10±1 days, mean±SD) and slowest at 12°C (26±1 days). About 83% of the females deposited eggs at 20 and 24°C and only 25% oviposited at 32°C. Females laid the highest number of eggs at 24°C and the lowest at 8°C. Egg development increased with increasing temperatures up to 28°C, then declined. The fastest egg development was noticed at 28°C (55±1 h) and slowest at 8°C (389±2 h). Over 90% egg hatch was observed at temperatures between 12 and 32°C, but decreased to 73% at 8°C. Larval development was fastest also at 28°C (20±0.2 days). Over 65% pupation was recorded at 20 and 24°C, but decreased to 15% at 32°C and 12% at 8°C. Pupal development was most rapid at 24°C (53±1 days) and slowest at 8°C (162±2 days). More than 70% of adult emergence was noticed in treatments between 16 and 24°C but decreased to 20% at 8°C. Based on a linear regression model of temperature-development rate relationship, the lower developmental thresholds were determined to be 6.6, 5.3, 2.9, and 5°C for preoviposition, egg, larval, and pupal stages, respectively. Based on a non-linear developmental rate model, the upper developmental thresholds were 34°C for preoviposition, egg, and larval stages and 30°C for pupal stage.  相似文献   

7.
Land surface temperature (LST) is crucial in surface energy balance, urban climatology, intensifying global change, ecological and environmental concerns. The present study examined the LST trends and spatio-temporal variation over India from 2002 to 2022. This includes comparison of LST for the summer and winter seasons over two decades. Secondly, the present study examined the LULC category wise LST variability during the day and night-time using MODIS (The Terra Moderate Resolution Imaging Spectroradiometer) derived products. This study explored the feasibility of cloud computing for big data analysis for LST distribution in seven landuse categories over India, providing a conceptual response to global warming. Results showed the existence of spatial LST variation due to changes in land-use patterns and MODIS derived vegetation indices- NDVI. Daytime LST for the summer and winter seasons of 2002 was found to be 45.17 °C and 39.13 °C, respectively. Outcomes illustrate declining trends in range (LSTmin-LSTmax) for winter seasons, initially, it was observed as 56.29 °C for 2002 while later on it was observed to be 20.21 °C and 20.87 °C for 2021 and 2022 respectively. The LSTmin (summer) has shown an increasing trend towards upper LST values, from −3.01 °C to 12.21 °C from 2002 TO 2022. LSTmin_winter has shown a rising trend towards the upper LST values from −17.16 °C to 9.15 °C in 2022. The maximum LST for the DRs was observed to be 61.56 °C, followed by UR as 56.24 °C. The findings demonstrate that daytime LSTmin and LSTmax are found to be 19.50 °C to 56.24 °C for UR, 29.5 °C to 61.56 °C for DR, 19.24 °C to 54.08 °C for SAR, −21.1 °C to 0.05 °C for SCR and 15 °C to 32.18 °C for FHR. NDVI-LST (daytime, nighttime and diurnal temperature range) feature space generates an obtuse triangle and depicts a negative correlation of vegetation for a few LULC categories. The outcomes indicated that desert and snow regions have highest LSTmax followed by urban and semiarid regions during daytime. During the nighttime, desert and urban regions have the highest temperature followed by semi-arid and forest regions. The outcomes support the efficacy of earth observation datasets and help to facilitate a better understanding of LULC and its impact on regional climate.  相似文献   

8.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

9.
The stability of drugs in biological evidence during collection and storage is of particular concern in forensic investigations. Microbes in the samples and other elements are an essential component of these investigations. In the current study, the HPLC method was used to examine the stability of (1R, 2S)-(-)-Ephedrine hydrochloride in plasma and urine samples inoculated with C. albicans after storage at 37 °C for 48 h and −20 °C for six months. In the stability experiment, MIC50% of (1R, 2S)-(-)-Ephedrine hydrochloride was applied according to MIC and MFC that were determined in this work. This drug had MIC and MFC of 50 and 100 ppm, respectively. In HPLC analysis, the standard (1R, 2S)-(-)-Ephedrine hydrochloride had a retention time of 1.63 and was used to identify this drug in samples that had or had not been exposed to C. albicans. The findings demonstrated that within 48 h at 37 °C, C. albicans had an impact on the drug concentration (10% and more than 15%, respectively, were lost in plasma and urine samples inoculated with C. albicans). In plasma samples, the drug content remained stable at −20 °C for three months, although it degraded in urine samples after one month. In plasma and urine samples, the concentration reduction had surpassed 70% and 50% by the sixth month, respectively. The results of this investigation show that C. albicans can change the stability of (1R, 2S)-(-)-Ephedrine hydrochloride in plasma and urine samples that contain MIC50% of Ephedrine hydrochloride.  相似文献   

10.
  1. Neochetina eichhorniae is the most widely established biocontrol agent on water hyacinth populations around South Africa. However, some N. eichhorniae populations have failed to adequately control their host population, specifically those exposed to cold conditions.
  2. The aim of this study was to determine whether two climatically distinct populations of N. eichhorniae in South Africa differ in their low‐temperature physiology, which tests whether local‐climate adaptation has occurred.
  3. We estimated weevil CTmin, LLT50, SCP, and SCP mortality using standard approaches. Contrary to expectation based on climatic thermal profiles at the two sites, weevils from the warm locality ((mean ± SE) CTmin = 5.0 °C ± 0.2, LLT50 = ?11.3 °C ± 0.03, SCP = ?15.8 °C ± 0.6) were able to maintain activity and tolerate colder temperatures than the weevils from the colder site (CTmin = 6.0 °C ± 0.5, LLT50 = ?10.1 °C ± 0.1, SCP = ?12.9 °C ± 0.8).
  4. These contradictory outcomes are likely explained by the poor nutrient quality of the plants at the cold site, driving low‐temperature performance variation that overrode any macroclimate variation among sites. The cold site weevils may also have adapted to survive wide‐temperature variability, rather than perform well under very cold conditions. In contrast, the mass‐reared population of insects from the warm site has likely adapted to the consistent conditions that they experience over many years in confinement.
  相似文献   

11.
《Biological Control》2003,26(1):1-7
Muscididfurax raptor, a pupal parasitoid of house flies and other filth flies, is commonly infected with the microsporidium Nosema muscidifuracis. To determine the effects of infection on developmental time, uninfected and infected adult M. raptor were allowed to parasitize pupae of the house fly (Musca domestica) for 24 h. Exposed pupae of the two groups (infected and uninfected) were held at 15, 20, 25, 30, 32, and 34 °C with 75–80% relative humidity. Development of infected M. raptor was significantly longer at all temperatures than that of uninfected parasitoids, resulting in approximately 7% extensions of developmental times. Uninfected females completed development in 14.6, 19.6, and 30.4 days at 30, 25, and 20 °C, respectively, compared with 15.8, 20.7, and 32.3 days for infected females at these temperatures. The differences in developmental times provided narrow windows for isolating large proportions of uninfected M. raptor females for disease management programs. This window was greatest at 20 °C; 61% of the uninfected females emerged by day 30, at which time only 10% of the infected females had emerged.  相似文献   

12.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21 °C; control) and induced plasticity by rapid cold-hardening (RCH, 1 h at 0 °C followed by 1 h recovery), cold acclimation (CA, 5 days at 6 °C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between −16 and −23 °C, and were chill-susceptible. 80% of control flies were killed after 1 h at −7.2 °C (males) or −7.5 °C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0 °C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately −1.7 °C, which was ca. 0.5 °C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0 °C for 8 h took 30–40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity.  相似文献   

13.
The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) has become a serious threat to agricultural and ornamental plants in Southwest Iran. Pest-control studies have found Nephus hiekei Fürsch (Coleoptera: Coccinellidae), in large numbers on Phenacoccus solenopsis Tinsley, as a potential predator. However, there has been no investigation on this predator. In this research, the biology and age-stage, two-sex life table parameters of N. hiekei feeding on Ph. solenopsis were investigated at three constant temperatures (27, 32 and 37 ± 1 °C, 65 ± 5% RH and a photoperiod of 16: 8 (L: D) h. The duration of total pre-adult stage was found to decrease raising temperature from 26.98 ± 0.36 days at 27 °C to 14.24 ± 0.27 days at 37 °C. The oviposition period lasted 63.95 ± 3.14, 66.42 ± 3.34 and 25.20 ± 1.59 days at 27, 32, and 37 °C, respectively. Females laid an average of 365.68 ± 22.36, 543.79 ± 27.27 and 106.25 ± 6.38 eggs, at these three temperatures, respectively. The intrinsic rate of increase (rm = 0.1333 ± 0.0050 d–1), finite rate of increase (λ = 1.1423 ± 0.0057 d–1) and net reproductive rate (R0 = 188.89 ± 28.34 offspring) as well as gross reproductive rate (GRR = 308.31 ± 39.54 offspring) were greatest at 32 °C. The shortest mean generation time (T = 26.74 ± 0.65 days) was recorded at 37 °C and the longest at 27 °C (T = 56.48 ± 1.0 days). These results indicate that N. hiekei can successfully survive and reproduce at temperatures of around 32 °C, and has good potential to be an effective biological control agent of Ph. solenopsis.  相似文献   

14.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

15.
《Journal of Asia》2014,17(3):445-449
The developmental time and survival of overwintering Sericinus montela Gray pupae were studied at four constant temperatures (15.0, 20.0, 25.0, and 30.0 °C), 40 ± 10% relative humidity, and 10:14 h light:dark cycle. The developmental time of both sexes decreased with increasing temperature between 15.0 °C (70.18 days for females and 55.28 days for males) and 30.0 °C (19.60 days for females and 13.78 days for males). The development periods of females were longer than those of males at each constant temperature. The relationship between the developmental rate and temperature was fitted by a linear model and a nonlinear developmental rate model (Lactin 1). The mortality of overwintered S. montela pupae was lowest at 25.0 °C (16.7%) and highest at 15.0 °C (36.7%). The lower developmental thresholds were 12.38 and 12.16 °C for females and males, respectively. The distribution of development completion for females and males was described by the two-parameter Weibull distribution equation (r2 = 0.87 for females and r2 = 0.94 for males). The date for the cumulative 50% adult emergence was within one or two days of that predicted using the Lactin 1 model. The temperature-dependent developmental model for S. montela could be applied to predict the timing of spring emergence in different geographical locations and will be helpful in developing a full-cycle phenology model for S. montela.  相似文献   

16.
《Journal of Asia》2022,25(2):101918
The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is one of the polyphagous and destructive pests in the world. It has caused a lot of damage in cotton fields and settles on other host plants, especially Chinese hibiscus shrubs Hibiscus rosa-sinensis L. and causes irrecoverable damages to these ornamental plants and urban landscape. Midge fly Dicrodiplosis manihoti Harris (Dip.: Cecidomiidae) is one of the most common fly species which was collected in mealybugs colonies. In this study, the biology and age-stage, two-sex life table parameters of Dicrodiplosis manihoti, was evaluated at four constant temperatures (22, 27, 32 and 37 ± 1 °C, 65 ± 5 % RH and a photoperiod of 16: 8 (L: D) h) in the laboratory conditions. The developmental pre-adult period was found as 36.12 ± 0.38, 24.09 ± 0.41, 14.96 ± 0.34 and 12.68 ± 0.26 days and the average egg produced by females was 23.65 ± 2.86, 11.14 ± 2.09, 12.32 ± 3.94 and 8.57 ± 0.67 at those temperatures, respectively which decreased as the temperature increased from 22 to 37 °C, respectively. The population intrinsic rate of increase (rm) was 0.0247 ± 0.0051, 0.0291 ± 0.0099, 0.0374 ± 0.0206 and 0.0103 ± 0.0129 (d-1), and the population finite rate of increase (λ) for the above mentioned temperatures was 1.0249 ± 0.0052, 1.0295 ± 0.0101, 1.0384 ± 0.0212 and 1.0104 ± 0.0130 (d-1), respectively. Also, the net reproductive rate (R0) at the above mentioned temperatures was 2.62 ± 0.5, 2.19 ± 0.53, 2.05 ± 0.73 and 1.18 ± 0.22 offspring respectively. The shortest (T = 14.88 ± 0.45 days) and the longest (T = 38.28 ± 0.65 days) mean generation time was recorded at 37 and 22 °C, respectively. According to the results of this study D. manihoti has a good potential to control of Ph. solenopsis and the temperature of around 32 °C is the best for mass rearing this predator.  相似文献   

17.
Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10 °C and 20 °C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34 °C, a critical thermal maxima of 34.6–41.4 °C, and a critical thermal minima of 2.6–0.8 °C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner.The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change.  相似文献   

18.
The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a “critical” core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h−1 with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h−1, grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m−2 min−1, respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.  相似文献   

19.
In this study, we explore the interplay of seasonal insect assemblages and carcass weight change to refine the estimation of minimum post-mortem interval (PMImin), a key variable in forensic investigations. By integrating these parameters, we shed light on their combined influence on decomposition stages, thus paving the way for a more robust method of PMImin estimation. Our approach relies on rigorous field studies examining pig carcasses across spring, summer and autumn, with comprehensive measurements of carcass weight and detailed documentation of insect succession. We observed distinct insect assemblages and weight-change trends characteristic of each season, underlining the influence of seasonal variability on decomposition dynamics. To further enhance the reliability of our model, we combined the novel parameter of carcass weight change with the conventional total body score (TBS) method, ensuring a more objective assessment of decomposition stages. Although our study indicates promising advancements, it also acknowledges the limitations of using a single pig carcass per season, suggesting future research should incorporate larger sample sizes.  相似文献   

20.

The impact of in-situ CO2 nano-bubbles generation on the freezing properties of soft serve, milk, and apple juice was investigated. Carbonated (0, 1000, and 2000 ppm) liquid foods contained in a tube were submerged and cooled for 90 min in a pre-set ethylene glycol bath (−15 °C). Before the enclosed liquid reached 0 °C, the vibration was discharged through ultrasound in the bath to create nano-bubbles within the carbonated food samples, and the changes in temperature for 90 min of each food were recorded as a freezing curve. The time for onset of nucleation of control soft serve mix was halved in samples with 2000-ppm CO2 due to the presence of nano-bubbles. Likewise, the nucleation time for milk with and without nano-bubbles at the same CO2 concentration of 2000 ppm was 7.9 ± 0.1 and 2.8 ± 0.8 min, respectively. The generation of CO2 nano-bubbles from 2000-ppm CO2 level in 10 oBx apple juice displayed −9.3 ± 0.3 °C nucleation temperature while the control one had −11.7 ± 0.9 °C.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号