首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitous low‐grade thermal energy, which is typically wasted without use, can be extremely valuable for continuously powering electronic devices such as sensors and wearable electronics. A popular choice for waste heat recovery has been thermoelectric energy conversion, but small output voltage without energy‐storing capability necessitates additional components such as a voltage booster and a capacitor. Here, a novel method of simultaneously generating a large voltage from a temperature gradient and storing electrical energy without losing the benefit of solid‐state no‐moving part devices like conventional thermoelectrics is reported. Thermally driven ion diffusion is used to greatly increase the output voltage (8 mV K?1) with polystyrene sulfonic acid (PSSH) film. Polyaniline‐coated electrodes containing graphene and carbon nanotube sandwich the PSSH film where thermally induced voltage‐enabled electrochemical reactions, resulting in a charging behavior without an external power supply. With a small temperature difference (5 K) possibly created over wearable energy harvesting devices, the thermally chargeable supercapacitor produce 38 mV with a large areal capacitance (1200 F m?2). It is anticipated that the attempt with thermally driven ion diffusion behaviors initiates a new research direction in thermal energy harvesting.  相似文献   

2.
Thermoelectric (TE) materials have the capability of converting heat into electricity, which can improve fuel efficiency, as well as providing robust alternative energy supply in multiple applications by collecting wasted heat, and therefore, assisting in finding new energy solutions. In order to construct high performance TE devices, superior TE materials have to be targeted via various strategies. The development of high performance TE devices can broaden the market of TE application and eventually boost the enthusiasm of TE material research. This review focuses on major novel strategies to achieve high‐performance TE materials and their applications. Manipulating the carrier concentration and band structures of materials are effective in optimizing the electrical transport properties, while nanostructure engineering and defect engineering can greatly reduce the thermal conductivity approaching the amorphous limit. Currently, TE devices are utilized to generate power in remote missions, solar–thermal systems, implantable or/wearable devices, the automotive industry, and many other fields; they are also serving as temperature sensors and controllers or even gas sensors. The future tendency is to synergistically optimize and integrate all the effective factors to further improve the TE performance, so that highly efficient TE materials and devices can be more beneficial to daily lives.  相似文献   

3.
High‐performance GeTe‐based thermoelectrics have been recently attracting growing research interest. Here, an overview is presented of the structural and electronic band characteristics of GeTe. Intrinsically, compared to low‐temperature rhombohedral GeTe, the high‐symmetry and high‐temperature cubic GeTe has a low energy offset between L and Σ points of the valence band, the reduced direct bandgap and phonon group velocity, and as a result, high thermoelectric performance. Moreover, their thermoelectric performance can be effectively enhanced through either carrier concentration optimization, band structure engineering (bandgap reduction, band degeneracy, and resonant state engineering), or restrained lattice thermal conductivity (phonon velocity reduction or phonon scattering). Consequently, the dimensionless figure of merit, ZT values, of GeTe‐based thermoelectric materials can be higher than 2. The mechanical and thermal stabilities of GeTe‐based thermoelectrics are highlighted, and it is found that they are suitable for practical thermoelectric applications except for their high cost. Finally, it is recognized that the performance of GeTe‐based materials can be further enhanced through synergistic effects. Additionally, proper material selection and module design can further boost the energy conversion efficiency of GeTe‐based thermoelectrics.  相似文献   

4.
Fiber‐based flexible thermoelectric energy generators are 3D deformable, lightweight, and desirable for applications in large‐area waste heat recovery, and as energy suppliers for wearable or mobile electronic systems in which large mechanical deformations, high energy conversion efficiency, and electrical stability are greatly demanded. These devices can be manufactured at low or room temperature under ambient conditions by established industrial processes, offering cost‐effective and reliable products in mass quantity. This article presents a critical overview and review of state‐of‐the‐art fiber‐based thermoelectric generators, covering their operational principle, materials, device structures, fabrication methods, characterization, and potential applications. Scientific and practical challenges along with critical issues and opportunities are also discussed.  相似文献   

5.
Shape-memory polymers (SMP) are versatile stimuli-responsive materials that can switch, upon stimulation, from a temporary to a permanent shape. This advanced functionality makes SMP suitable and promising materials for diverse technological applications, including the fabrication of smart biomedical devices. In this paper, advances in the design of SMP are discussed, with emphasis on materials investigated for medical applications. Future directions necessary to bring SMP closer to their clinical application are also highlighted.  相似文献   

6.
Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large‐scale, cost‐effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect‐evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show significant improvements in material performance, indicated by minority carrier lifetime gains, and confirm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high‐throughput computing to accelerate the pace of learning in materials processing for energy applications.  相似文献   

7.
Thermoelectric materials could play an increasing role for the efficient use of energy resources and waste heat recovery in the future. The thermoelectric efficiency of materials is described by the figure of merit ZT = (S2σT)/κ (S Seebeck coefficient, σ electrical conductivity, κ thermal conductivity, and T absolute temperature). In recent years, several groups worldwide have been able to experimentally prove the enhancement of the thermoelectric efficiency by reduction of the thermal conductivity due to phonon blocking at nanostructured interfaces. This review addresses recent developments from thermoelectric model systems, e.g. nanowires, nanoscale meshes, and thermionic superlattices, up to nanograined bulk‐materials. In particular, the progress of nanostructured silicon and related alloys as an emerging material in thermoelectrics is emphasized. Scalable synthesis approaches of high‐performance thermoelectrics for high‐temperature applications is discussed at the end.  相似文献   

8.
Among the different nanostructures that have been demonstrated as promising materials for various applications, 3D nanostructures have attracted significant attention as building blocks for constructing high‐performance nanodevices. Particularly over the last decade, considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures as electrodes for electrochemical energy conversion and storage devices. Although remarkable progress has been achieved, the performance of electrochemical energy devices based on 3D nanostructures in terms of energy conversion efficiency, energy storage capability, and device reliability still needs to be significantly improved to meet the requirements for practical applications. Rather than simply outlining and comparing different 3D nanostructures, this article systematically summarizes the general advantages as well as the existing and future challenges of 3D nanostructures for electrochemical energy conversion and storage, focusing on photoelectrochemical water splitting, photoelectrocatalytic solar‐to‐fuels conversion from nitrogen and carbon dioxide, rechargeable metal‐ion batteries, and supercapacitors. A comprehensive understanding of these advantages and challenges shall provide valuable guidelines and enlightenments to facilitate the further development of 3D nanostructured materials, and contribute to the achieving more efficient energy conversion and storage technologies toward a sustainable energy future.  相似文献   

9.
Qu K  Ren J  Qu X 《Molecular bioSystems》2011,7(9):2681-2687
Both graphene oxide (GO) and DNA can be used as building blocks for nano/micro devices or hybrid structures. Reversible assembly of these nanomaterials is highly desirable because of their promising applications in chemical sensors, energy storage, catalysis, and optoelectronic applications. However, reversible assembly of GO-DNA hybrid materials has not been achieved based on specific DNA hybridization and conformational transition. Here we report a general pH-responsive, DNA-directed assay for the design of a reversible assembly of GO-GO and GO-AuNPs hybrid using human telomeric G-quadruplex and i-motif DNA.  相似文献   

10.
Electronics wastes (e‐wastes) are the major concern in the rapid expansion of smart/wearable/portable electronics in modern high‐tech society. Informal processing and enormous gathering of e‐wastes can lead to adverse human/animal health effects and environmental pollution worldwide. Currently, these issues are a big headache and require the scientific community to develop effective green energy harvesting technologies using biodegradable/biocompatible materials. Piezoelectric/triboelectric nanogenerators (PNGs/TNGs) are considered one of the most promising renewable green energy sources for the conversion of mechanical/biomechanical energies into electricity. However, organic/inorganic material based PNGs/TNGs are very much incompatible, and considered e‐wastes for their non‐biodegradability. This review covers potential uses of biodegradable/biocompatible materials which are wasted every day as nature driven material based bio‐nanogenerators with a particular focus on their applications in flexible PNGs/TNGs fabrication. Structural investigation and possible working principles are described first in order to outline the basic mechanism of bio‐inspired materials behind energy harvesting. Then, energy harvesting abilities and the mechanical sensing of bio‐inspired integrated flexible devices are discussed under various mechanical/biomechanical activities. Finally, their potential applications in various flexible, wearable, and portable electronic fields are demonstrated. These bio‐inspired energy harvesting devices can make huge changes in fields as diverse as portable electronics, in vitro/in vivo biomedical applications, and many more.  相似文献   

11.
Direct inkjet printing of functional inks is an emerging and promising technique for the fabrication of electrochemical energy storage devices. Electrochromic energy devices combine electrochromic and energy storage functions, providing a rising and burgeoning technology for next‐generation intelligent power sources. However, printing such devices has, in the past, required additives or other second phase materials in order to create inks with suitable rheological properties, which can lower printed device performance. Here, tungsten oxide nanocrystal inks are formulated without any additives for the printing of high‐quality tungsten oxide thin films. This allows the assembly of novel electrochromic pseudocapacitive zinc‐ion devices, which exhibit a relatively high capacity (≈260 C g?1 at 1 A g?1) with good cycling stability, a high coloration efficiency, and fast switching response. These results validate the promising features of inkjet‐printed electrochromic zinc‐ion energy storage devices in a wide range of applications in flexible electronic devices, energy‐saving buildings, and intelligent systems.  相似文献   

12.
Ionic liquids (ILs) continue to receive attention for applications in electrochemistry because of their unique properties as charge carriers (electrolytes) and redox shuttles (solar cells) and their ability to promote energy storage either electrostatically (supercapacitors) or chemically (secondary batteries). More specifically, the confinement of ILs in nanopores or the adsorption at surfaces, are considered a promising strategy for all solid‐state energy storage and conversion devices. Upon such immobilization, one benefits from the specific properties of ILs (large electrochemical window, relatively high ionic conductivity, task‐specific functionalities, etc.) combined with surface and confinement effects that can be tuned by playing with the porosity and chemical nature of the host. Here, some emerging applications of ILs in electrochemistry are first discussed: silica‐based ionogels as solid electrolytes and systems that involve carbon host substrates, as typical electrode materials in electrical double layer capacitors and lithium secondary batteries. Also, a non‐exhaustive, yet a comprehensive picture of the confinement and surface effects at play in such applications is presented. Then, the confinement of task‐specific ILs such as protonic ILs, IL lithium salts, and biredox ILs, is discussed, which paves the way for promising perspectives. Finally, some concluding remarks are reported and directions for future work are suggested.  相似文献   

13.
Nanostructured materials have greatly improved the performance of electrochemical energy storage devices because of the increased activity and surface area. However, nanomaterials (e.g., nanocarbons) normally possess low packing density, and thus occupy more space which restricts their suitability for making electrochemical devices as compact as possible. This has resulted in their low volumetric performance (capacitance, energy density, and power density), which is a practical obstacle for the application of nanomaterials in mobile and on‐board energy storage devices. While rating electrode materials for supercapacitors, their volumetric performance is equally important as the gravimetric metrics and more reliable in particular for systems with limited space. However, the adopted criteria for measuring the volumetric performance of supercapacitors vary in the literature. Identifying the appropriate performance criteria for the volumetric values will set a universal ground for valid comparison. Here, the authors discuss the rationale for quantifying the volumetric performance metrics of supercapacitors from the three progressive levels of materials, electrodes, and devices. It is hoped that these thoughts will be of value for the general community in energy storage research.  相似文献   

14.
Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane‐impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH‐O) and a poly(N‐isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.  相似文献   

15.
Wu M  Yuan F 《PloS one》2011,6(6):e20923
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (~10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.  相似文献   

16.
Smart windows regulate the indoor solar radiation by adjusting their optical transmissive properties, offering an efficient way toward energy‐saving buildings, vehicles, etc. Electrochromism is one of the most promising solutions due to its simple control, versatile colors. Yet, electrochromics cannot give zero‐transmission through the whole visible range, leading to the windows that can always be looked through and limited for applications in the public sector. In this work, poly(N‐isopropylacrylamide) (PNIPAm) hydrogel, which undergoes temperature‐stimulated phase transition from a highly transparent state to a highly scattered zero‐transmission state through the whole visible range is used in the electrolyte of the electrochromic devices without affecting their electrochromic performance. It can be universally applied to inorganic and organic electrochromic devices, and the phase transition temperature can be easily tuned by the ion concentration. Therefore, apart from its ion conductive function, the electrolyte performs the chromatic transition function as well, allowing the electrochromic devices to achieve a zero‐transmissive, absolute “private” state. This chromatic engineering of the electrolyte can significantly broaden the industrial market of electrochromic smart window applications from public to private circumstances and bring much more flexibility in building façades design, which is a remarkable pavement for further industrial applications.  相似文献   

17.
The use of new technologies including personal mobile devices has become an indispensable tool in our daily lives, and thus its presence in education is becoming ever more ubiquitous. In the current scenario imposed by the COVID‐19 pandemic, in which in‐person presence in classrooms has been enormously reduced at all educational levels, the use of mobile learning and cutting‐edge methods can greatly improve the way students learn and enhance their online‐learning experience. Mobile applications, combined with extended reality technologies such as virtual reality (VR) and augmented reality (AR), are powerful tools that connect real and virtual environments and allow higher interaction for the user. We have leveraged the advantages of mobile learning and extended reality technologies to develop a series of mobile applications and associated educational activities for university‐level courses involving invertebrate zoology field work. In particular, we have developed (a) a VR SCUBA diving video to explore the diversity of a marine protected area; (b) an AR mobile app to visualize 3D models of marine invertebrates; and (c) a mobile‐based catalogue to explore the terrestrial biodiversity of one of the most diverse regions of Spain. Here we provide detailed information describing the design and creation of these tools, as well as their application in class, to facilitate and encourage their use in higher education. Despite the relatively recent application of these technologies in education, they have an enormous potential: they improve student motivation and learning, can be adapted to different learning styles, reduce social inequalities, and facilitate inclusiveness and diversity practices in the classroom.  相似文献   

18.
The rapid development of the concept of the “Internet of Things (IoT)” requires wearable devices with maintenance‐free batteries, and thermoelectric energy conversion based on large‐area flexible materials has attracted much attention. Among large‐area flexible materials, 2D materials, such as graphene and related materials, are promising for thermoelectric applications due to their excellent transport properties and large power factors. In this Review, both single‐crystalline and polycrystalline 2D materials are surveyed using the experimental reports on thermoelectric devices of graphene, black phosphorus, transition metal dichalcogenides, and other 2D materials. In particular, their carrier‐density dependent thermoelectric properties and power factors maximized by Fermi level tuning techniques are focused. The comparison of the relevant performances between 2D materials and commonly used thermoelectric materials reveals the significantly enhanced power factors in 2D materials. Moreover, the current progress in thermoelectric module applications using large‐area 2D material thin films is summarized, which consequently offers great potential for the use of 2D materials in large‐area flexible thermoelectric device applications. Finally, important remaining issues and future perspectives, such as preparation methods, thermal transports, device designs, and promising effects in 2D materials, are discussed.  相似文献   

19.
20.
Two‐dimensional (2D) nanomaterials (i.e., graphene and its derivatives, transition metal oxides and transition metal dichalcogenides) are receiving a lot attention in energy storage application because of their unprecedented properties and great diversities. However, their re‐stacking or aggregation during the electrode fabrication process has greatly hindered their further developments and applications in rechargeable lithium batteries. Recently, rationally designed hierarchical structures based on 2D nanomaterials have emerged as promising candidates in rechargeable lithium battery applications. Numerous synthetic strategies have been developed to obtain hierarchical structures and high‐performance energy storage devices based on these hierarchical structure have been realized. This review summarizes the synthesis and characteristics of three styles of hierarchical architecture, namely three‐dimensional (3D) porous network nanostructures, hollow nanostructures and self‐supported nanoarrays, presents the representative applications of hierarchical structured nanomaterials as functional materials for lithium ion batteries, lithium‐sulfur batteries and lithium‐oxygen batteries, meanwhile sheds light particularly on the relationship between structure engineering and improved electrochemical performance; and provides the existing challenges and the perspectives for this fast emerging field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号