首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Common killifish Fundulus heteroclitus were acclimated to ecologically relevant temperatures (5, 15 and 33°C) and their maximum heart rate (fHmax) was measured at each acclimation temperature during an acute warming protocol. Acclimation to 33°C increased peak fHmax by up to 32% and allowed the heart to beat rhythmically at a temperature 10°C higher when compared with acclimation to 5°C. Independent of acclimation temperature, peak fHmax occurred about 3°C cooler than the temperature that first produced cardiac arrhythmias. Thus, when compared with previously published values for the critical thermal maximum of F. heteroclitus, the temperature for peak fHmax was cooler and the temperature that first produced cardiac arrhythmias was similar to these critical thermal maxima. The considerable thermal plasticity of fHmax demonstrated in the present study is entirely consistent with eurythermal ecology of killifish, as shown previously for another eurythermal fish Gillichthys mirabilis.  相似文献   

2.
The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (fHmax) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, fHmax increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near‐freezing Arctic temperatures in which they are routinely found. Indeed, fHmax increased steadily between 0·5 and 5·5° C, with no significant difference between the CB and VA tests (P > 0·05) and with an overall mean ± s.e. Q10 of 2·4 ± 0·5. The first Arrhenius breakpoint temperature (TAB) for fHmax was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3·2 ± 0·3 and 3·6 ± 0·3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5·5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (Tarr), ranging from 10·2 to 15·2° C with mean ± s.e. 12·4 ± 0·4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; TQB) at 8·0 and 5·5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.  相似文献   

3.
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide–gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.  相似文献   

4.
Historically, studies of reptilian thermal biology have compared ambient temperatures (Ta) to body temperatures (Tb) from the animal under study, with Tb usually taken from the cloaca and various instruments being used to measure Tb. The advent of surgically implanted miniature temperature loggers has offered the opportunity to test the efficacy of cloacal Tb as a measurement in thermoregulatory studies. We expected that there was a difference between skin, cloacal, and core Tb's. Temperatures were measured from various positions on leopard tortoises (Stigmochelys pardalis) using thermocouples and miniature temperature loggers, including surgically implanted temperature loggers. Measurements of temperature from various positions on and in the tortoise were significantly different from Ta. Cloacal Tb's were significantly lower than all other body temperatures measured, and core Tb's were significantly different from cloacal Tb, skin and carapace temperatures. In addition, significant differences were found between measures of temperature from other parts of the body. The variations between core Tb, cloacal Tb and other measures of Tb indicated that there are large thermal gradients within the body of a relatively large tortoise at any given time with cloacal Tb not an accurate measure of core Tb.  相似文献   

5.
In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax) were observed among size‐matched wild‐type, domesticated, growth hormone (GH)‐transgenic fish fed to satiation, and GH‐transgenic fish on a ration‐restricted diet. Instead, GH‐transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH‐transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits.  相似文献   

6.
Human activities have caused an increase in atmospheric CO2 over the last 250 years, leading to unprecedented rates of change in seawater pH and temperature. These global scale processes are now commonly referred to as ocean acidification and warming, and have the potential to substantially alter the physiological performance of many marine organisms. It is vital that the effects of ocean acidification and warming on marine organisms are explored so that we can predict how marine communities may change in future. In particular, the effect of ocean acidification and warming on host-parasite dynamics is poorly understood, despite the ecological importance of these relationships. Here, we explore the response of one himasthlid trematode, Himasthla sp., an abundant and broadly distributed species of marine parasite, to combinations of elevated temperature and pCO2 that represent physiological extremes, pre-industrial conditions, and end of century predictions. Specifically, we quantified the life span of the free-living cercarial stage under elevated temperature and pCO2, focussing our research on functional life span (the time cercariae spend actively swimming) and absolute life span (the period before death). We found that the effects of temperature and pCO2 were complex and interactive. Overall, increased temperature negatively affected functional and absolute life span, e.g. across all pCO2 treatments the average time to 50% cessation of active swimming was approximately 8 h at 5 °C, 6 h at 15 °C, 4 h at 25 °C, and 2 h at 40 °C. The effect of pCO2, which significantly affected absolute life span, was highly variable across temperature treatments. These results strongly suggest that ocean acidification and warming may alter the transmission success of trematode cercariae, and potentially reduce the input of cercariae to marine zooplankton. Either outcome could substantially alter the community structure of coastal marine systems.  相似文献   

7.
It is still not fully understood how megaherbivores regulate their body temperature (Tb), particularly with respect to their unfavourable surface to volume ratio. The paucity of information is probably owing to the difficulty obtaining physiological parameters from such animals. We developed a precise and reliable non-invasive method for determining the Tb of large-bodied mammals. We used this method on African and Asian elephants. Small capsules (30 g) containing a temperature-sensitive transmitter and a memory for onboard data storage were hand-fed 71 times to elephants (N=21) and Tb was measured during gut passage. In 64 cases, sensors were successfully retrieved. The operation and reliability of our data loggers was sufficient and compared favourably with any other published method.  相似文献   

8.
A new, three‐dimensional geometric morphometric approach was assessed to study the effect of developmental temperature on fish heart shape utilizing geometric morphometrics of three‐dimensional landmarks captured on digitally reconstructed zebrafish hearts. This study reports the first three‐dimensional analysis of the fish heart and demonstrates significant shape modifications occurring after three developmental temperature treatments (TD = 24, 28 or 32°C) at two distinct developmental stages (juvenile and adult fish). Elevation of TD induced ventricle roundness in juveniles, males and females. Furthermore, significant differences that have not been described so far in heart morphometric indices (i.e., ventricle sphericity, bulbus arteriosus elongation and relative location, heart asymmetry) were identified. Sex proved to be a significant regulating factor of heart shape plasticity in response to TD. This methodology offers unique benefits by providing a more precise representation of heart shape changes in response to developmental temperature that are otherwise not discernable with the previously described two‐dimensional methods. Our work provides the first evidence of three‐dimensional shape alterations of the zebrafish heart adding to the emerging rationale of temperature‐driven plastic responses of global warming and seasonal temperature disturbances in wild fish populations and in other ectothermic vertebrates as well (amphibians and reptiles).  相似文献   

9.
鱼类对海洋升温与酸化的响应   总被引:1,自引:0,他引:1  
自工业革命以来,空气中人为排放CO2量增加,引起温室效应,导致地球表面温度升高和海水升温;同时,由于海-气界面气体交换,大气中CO2部分溶解于海洋,引起海洋酸化。海洋升温加快鱼体内生化反应和代谢速率,并通过影响生长、觅食和繁殖等生命过程中能量供给,间接影响到鱼类种群分布、群落结构及生态系统的功能。而海水酸化会干扰海洋鱼类仔稚鱼的感觉和行为,增加其被捕食率,并削弱其野外生存能力,可能威胁自然种群补给量。综述了海洋升温、海洋酸化及其两者共同作用对海洋鱼类的影响,为预测鱼类响应全球海洋环境变化的响应趋势提供相关依据。  相似文献   

10.
Global warming is occurring at an alarming rate and predictions are that air temperature (Ta) will continue to increase during this century. Increases in Ta as a result of unabated production of greenhouse gases in our atmosphere pose a threat to the distribution and abundance of wildlife populations worldwide. Although all the animals worldwide will likely be affected by global warming, diurnal animals in the deserts will be particularly threatened in the future because Tas are already high, and animals have limited access to water. It is expected that Saudi Arabia will experience a 3–5 °C in Ta over the next century. For predicting the consequences of global warming for animals, it is important to understand how individual species will respond to higher air temperatures. We think that populations will not have sufficient time to make evolutionary adjustments to higher Ta, and therefore they will be forced to alter their distribution patterns, or make phenotypic adjustments in their ability to cope with high Ta. This report examines how increases in Ta might affect body temperature (Tb) in the animals of arid regions. We chose three taxonomic groups, mammals, birds, and reptiles (Arabian oryx, Arabian spiny-tailed lizard, vultures, and hoopoe larks) from Saudi Arabia, an area in which Ta often reaches 45 °C during midday in summer. When Ta exceeds Tb, animals must resort to behavioral and physiological methods to control their Tb; failure to do so results in death. The observations of this study show that in many cases Tb is already close to the upper lethal limit of around 47° C in these species and therefore allowing their Tb to increase as Ta increases are not an option. We conclude that global warming will have a detrimental impact on a wide range of desert animals, but in reality we know little about the ability of most animals to cope with change in Ta. The data presented should serve as base-line information on Tb of animals in the Kingdom for future scientists in Saudi Arabia as they explore the impact of global warming on animal species.  相似文献   

11.

Introduction

Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated P CO2 (0.2 kPa CO2) at different levels of physiological organisation.

Results

For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated P CO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher P CO2 was compensated for by intracellular bicarbonate accumulation.

Conclusion

The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and P CO2.
  相似文献   

12.
We investigated the usefulness of body temperature (Tb) as a guide to egg-laying in a monotreme mammal, the echidna, Tachyglossus aculeatus, and attempted to quantify changes in Tb and relate them to specific reproductive events. Six female echidnas were implanted with temperature loggers and then radio-tracked in the wild for up to 6 years. In reproductive years there was a significant reduction in Tb variability 21.7±2.5 days after final arousal from hibernation, which coincided with the time at which the female entered the nursery burrow. Egg-laying occurred within 2 days of this Tb change which lasted an average of 43±4 days.  相似文献   

13.
The objective of this study was to evaluate a novel fully implantable radio-based blood flow biotelemetry system which allows simultaneously measurement of blood flow on two channels and temperature on one channel, in fish. These are the first recordings of blood flow from free-swimming fish, showing that the system is capable of recording blood flow in the ventral aorta (cardiac output) and celiacomesenteric artery (gastrointestinal blood flow) in green sturgeon Acipenser medirostris exposed to a series of different stimuli for up to 7 days after implantation. The results showed stable base line recordings and blood flow was used to calculated heart rate (f H) and stroke volume (V s). It was possible to reproduce the same type of responses as has previously been reported during exposure to hypoxia, temperature, stress and feeding. The mass of our implant was less than 2% of the body mass which is well within the recommended sizes for surgically implanted telemetry transmitters and it fitted easily within the abdominal cavity of the sturgeon. A fully implantable system minimizes the risk of infection/expulsion and maximizes the likelihood that the studied fish will behave naturally and be treated normally by surrounding fish. The use of biotelemetry in basic comparative physiology and applied animal ecology could help scientists to collect information that has previously been challenging to obtain and to open the possibility for new types of physiological and ecophysiological studies. Handling editor: K. Martens  相似文献   

14.
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.  相似文献   

15.
《农业工程》2021,41(5):424-431
Since 2007, Ulva prolifera-induced green tide occurred every year in the offshore waters of the Yellow Sea in China, which have resulted in large economic loss and heavy damage to local marine ecosystems. In addition, ocean warming and heavy metal pollution have become two main marine environmental issues in the world. However, the interactive effects of ocean warming and zinc (Zn2+) exposure on macroalgae remain poorly studied. An experiment was conducted to determine the relative growth rate (RGR) and photosynthetic performance at different temperatures (15, 20, 25 °C) and Zn2+ concentrations (0, 0.0026, 0.026, 0.26, and 0.52 mg/L). Results showed that low temperature (15 °C) increased the RGR under the medium levels of Zn2+ (0.026 mg/L) compared with high temperature (20 and 25 °C). On the other hand, at 20 and 25 °C the inhibition of Zn2+ on the PSII quantum yield and electron transport rate of U. prolifera was promoted. Furthermore, dark respiration rate increased with increases in temperature and Zn2+ concentration, while at the high temperature, the ratio of the net photosynthetic rate and dark respiration rate were (Pn/Rd) inhibited, and the inhibition was positively related to the Zn2+ concentration at ≥0.26 mg/L. in addition, the photoprotective ability was hindered under high temperature (20 and 25 °C) and the potential photosynthetic ability was restricted under higher levels of Zn2+ concentration. We conclude that ocean warming could promote the inhibition effects of heavy metal pollutions on physiological performance of U. prolifera, and probably other marine microalgae as well, on which future studies shall be conducted  相似文献   

16.
Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses metabolism conserving oxygen and preventing hypoxaemia. As an initial approach to understanding the thermoregulatory responses to cold and hypoxia in a small mammal, we explored the effects of acclimation to these two stressors on the body temperature (Tb) and the daily and ultradian Tb variations of Sprague-Dawley rats. As Tb is influenced by sleep-wake cycles, these Tb variations reflect underlying adjustments in set-point and thermosensitivity. The Tb of rats decreased precipitously during initial hypoxic exposure which was more pronounced in cold (Tb=33.4±0.13) than in room temperature (Tb=35.74±0.17) conditions. This decline was followed by an increase in Tb stabilising at a new level ~0.5 °C and ~1.4 °C below normoxic values at room and cold temperatures, respectively. Daily Tb variations were blunted during hypoxia with a greater effect in the cold. Ultradian Tb variations exhibited daily rhythmicity that disappeared under hypoxia, independent of ambient temperature. The adjustments in Tb during hypoxia and/or cold are in agreement with the hypothesis that an initial decrease in the Tb set-point is followed by its partial re-establishment with chronic hypoxia. This rebound of the Tb set-point might reflect cellular adjustments that would allow animals to better deal with low oxygen conditions, diminishing the drive for a lower Tb set-point. Cold and hypoxia are characteristic of high altitude environments. Understanding how mammals cope with changes in oxygen and temperature will shed light into their ability to colonize new environments along altitudinal clines and increase our understanding of how Tb is regulated under stimuli that impose contrasting physiological constraints.  相似文献   

17.
Climate change refugia are areas that are relatively buffered from contemporary climate change and may be important safe havens for wildlife and plants under anthropogenic climate change. Topographic variation is an important driver of thermal heterogeneity, but it is limited in relatively flat landscapes, such as the boreal plain and prairie regions of western Canada. Topographic variation within this region is mostly restricted to river valleys and hill systems, and their effects on local climates are not well documented. We sought to quantify thermal heterogeneity as a function of topography and vegetation cover within major valleys and hill systems across the boreal–grassland transition zone.Using iButton data loggers, we monitored local temperature at four hills and 12 river valley systems that comprised a wide range of habitats and ecosystems in Alberta, Canada (N = 240), between 2014 and 2020. We then modeled monthly temperature by season as a function of topography and different vegetation cover types using general linear mixed effect models.Summer maximum temperatures (T max) varied nearly 6°C across the elevation gradient sampled. Local summer mean (T mean) and maximum (T max) temperatures on steep, north‐facing slopes (i.e., low levels of potential solar radiation) were up to 0.70°C and 2.90°C cooler than highly exposed areas, respectively. T max in incised valleys was between 0.26 and 0.28°C cooler than other landforms, whereas areas with greater terrain roughness experienced maximum temperatures that were up to 1.62°C cooler. We also found that forest cover buffered temperatures locally, with coniferous and mixedwood forests decreasing summer T mean from 0.23 to 0.72°C and increasing winter T min by up to 2°C, relative to non‐forested areas.Spatial predictions of temperatures from iButton data loggers were similar to a gridded climate product (ClimateNA), but the difference between them increased with potential solar radiation, vegetation cover, and terrain roughness.Species that can track their climate niche may be able to compensate for regional climate warming through local migrations to cooler microsites. Topographic and vegetation characteristics that are related to cooler local climates should be considered in the evaluation of future climate change impacts and to identify potential refugia from climate change.  相似文献   

18.
Experimental warming of forest ecosystems typically stimulates soil respiration (CO2 efflux), but most warming experiments have been conducted in northern latitudes (>?40°N) with relatively young soils. We quantified the influence of experimental warming on soil respiration (RT) in two adjacent forest habitats—a mature, closed canopy forest and a gap where trees were manually removed— on highly-weathered Ultisols of the southeastern U.S. (33°N). Using temperature variation, both natural and induced by experimental warming, we also quantified the temperature sensitivity of RT, defined as the activation energy, EA in the Arrhenius equation. Experimental warming (either + 3 °C or + 5 °C above ambient) did not significantly increase soil respiration rate or cumulative CO2 loss over the 3 years of the experiment, and did not influence the temperature sensitivity of soil respiration, once the influence of natural temperature variation was taken into consideration. Despite the absence of an experimental warming effect, we observed that EA varied on monthly time scales, and varied differently in each habitat. Soil moisture and habitat also influenced RT, but the effects were not consistent, and varied by month. Our results suggest that although RT does depend on temperature, the sensitivity of RT to temperature variation is influenced primarily by factors like microclimate and plant phenology that can change on relatively short (<?monthly) time scales. Thus, using the temperature sensitivity of RT to predict future CO2 losses due to warming is only reasonable if monthly variation in EA is incorporated into models for lower-latitude subtropical ecosystems with highly weathered soils, such as those in this study. Finally, our results suggest that higher temperatures may not enhance RT in highly-weathered, C-poor soils to the extent that has been reported in prior studies of high-latitude soils, which may constrain ecosystem-atmosphere carbon exchanges and feedbacks to the climate system.  相似文献   

19.
Predicted future increases in global temperature may impose challenges for ectothermic animals like fish, but the physiological mechanisms determining the critical thermal maximum (CTmax) are not well understood. One hypothesis suggests that impaired cardiac performance, limited by oxygen supply, is an important underlying mechanism. Since vagal bradycardia is suggested to improve cardiac oxygenation and adrenergic stimulation may improve cardiac contractility and protect cardiac function at high temperatures, we predicted that pharmacological blockade of cardiac autonomic control would lower CTmax. Rainbow trout was instrumented with a flow probe and a ventilation catheter for cardioventilatory recordings and exposed to an acute thermal challenge until CTmax following selective pharmacological blockade of muscarinic or β-adrenergic receptors.Contrary to our prediction, CTmax (~26 °C) was unchanged between treatments. While β-adrenergic blockade reduced heart rate it did not impair cardiac stroke volume across temperatures suggesting that compensatory increases in cardiac filling pressure may serve to maintain cardiac output. While warming resulted in significant tachycardia and increased cardiac output, a high cholinergic tone on the heart was observed at temperatures approaching CTmax. This may represent a mechanism to maintain scope for heart rate and possibly to improve myocardial contractility and oxygen supply at high temperatures. This is the first study evaluating the importance of autonomic cardiac control on thermal tolerance in fish. While no effects on CTmax were observed, this study raises important questions about the underlying mechanisms determining thermal tolerance limits in ectothermic animals.  相似文献   

20.
Daily rhythms of body temperature (Tb) and activity (distance travelled) of eight free-ranging feral cats (Felis catus) were recorded via implanted body temperature loggers in conjunction with Global Positioning System technology (GPS-radio collars), over a period of 14 days. The calculation of distance travelled (as a measure for activity) from GPS-data points proved to be efficient to quantify the relationship of both variables under field conditions. Analysis of covariance (ANCOVA) was employed to disentangle the relative effects of activity and time of day on Tb. Most variance in Tb was explained by time of day (with distinctly higher Tb at night), while considerably less variation was explained by distance travelled. Most importantly, the correlation between distance travelled and Tb was significantly stronger during daytime than at night. Indeed, night-time Tb showed little fluctuation at all. Taken together, the results suggest that the circadian Tb rhythm is primarily generated by an endogenous oscillator and that high Tb during night-time are not driven by high(er) nocturnal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号