首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying intraspecific variation in heat tolerance is critical to understand how species respond to climate change. In a previous study, we recorded variability in critical thermal maxima (CTmax) by 3 °C among populations of small Iberian lizard species, which could substantially influence predictions of climate-driven activity restriction. Here, we undertake experiments to examine whether we could reproduce similar levels of heat-tolerance variability in response to water deficit. We hypothesized that deprivation of drinking water should increase variability in CTmax between populations more than deprivation of food under the theoretical expectation that the variation of the more limiting resource must trigger stronger variation in physiological performance. We measured CTmax after manipulating availability of live prey and drinking water in two populations of an arid and a mesic lizard species from the Iberian Peninsula. We quantified a mean CTmax across all studied lizards of 44.2 °C ± 0.2 SE for the arid species and 41.7 °C ± 0.3 SE for the mesic species. Using multimodel inference, we found that water deprivation (combined with food supply) caused population differences in CTmax by 3 to 4 °C which were two to three times wider than population differences due to food deprivation (combined with water supply) or to food and water provision. To highlight the need for more thermo-hydroregulatory research, we examined bias in research effort towards thermal versus hydric environmental effects on heat tolerance through a systematic literature review. We show that environmental temperature has been used five times more frequently than precipitation in ecological studies of heat tolerance of terrestrial species. Studies linking thermal tolerance of ectotherms to the interplay of air temperature and water availability are needed in the face of projected increases in aridity and drought in the 21st century, because the balance of body temperature and water resources are functionally interlinked.  相似文献   

2.
  • 1.Two eublepharid gecko species were tested for their thermal preferences in a thigmothermal gradient.
  • 2.Goniurosaurus kuroiwae kuroiwae from a humid subtropical Oriental forest selected a lower body temperature (Tp; average 16.6 °C) than Eublepharis macularius from an arid Palaearctic area (25.8 °C).
  • 3.Both the locations of animals along the gradient and the Tp were significantly more variable among G. k. kuroiwae than among E. macularius.
  • 4.There were no significant differences in Tp and in its variance between photophase and scotophase in either species.
  相似文献   

3.
For ectotherms, thermal physiology plays a fundamental role in the establishment and success of invasive species in novel areas and, ultimately, in their ecological interactions with native species. Invasive species are assumed to have a greater ability to exploit the thermal environment, higher acclimation capacities, a wider thermal tolerance range, and better relative performance under a range of thermal conditions. Here we compare the thermal ecophysiology of two species that occur in sympatry in a tropical dry forest of the Pacific coast of Mexico, the microendemic species Benedetti's Leaf-toed Gecko (Phyllodactylus benedettii) and the invasive Common House Gecko (Hemidactylus frenatus). We characterized their patterns of thermoregulation, thermoregulatory efficiency, thermal tolerances, and thermal sensitivity of locomotor performance. In addition, we included morphological variables and an index of body condition to evaluate their effects on the thermal sensitivity of locomotor performance in these species. Although the two species had similar selected temperatures and thermal tolerances, they contrasted in their thermoregulatory strategies and thermal sensitivity of locomotor performance. Hemidactylus frenatus had a higher performance than the native species, P. benedettii, which would represent an ecological advantage for the former species. Nevertheless, we suggest that given the spatial and temporal limitations in habitat use of the two species, the probability of agonistic interactions between them is reduced. We recommend exploring additional biotic attributes, such as competition, behavior and niche overlap in order assess the role of alternative factors favoring the success of invasive species.  相似文献   

4.
We studied the geographic variation in body temperatures of the lizard Tropidurus torquatus in 10 restinga populations along approximately 1500 km of Brazilian coast. The mean activity body temperatures (30.8–36.2 °C) seems to remain constant along the populations and the differences recorded among them result from the adjustment of each lizard population to the local thermal environment (i.e. may express in part the local microhabitat temperatures occurring in each of the localities in that particular moment). Forested and open habitat tropidurine species have different mean activity body temperatures, probably as a consequence of the different thermal environments in these habitats.  相似文献   

5.
1The decrease of temperatures along an elevation gradient imposes physiological constraints on reptiles that ultimately determine their distribution ranges. Forest patterns are likely to interact with this process, but very few studies have examined their contribution in determining distribution limits.2We examined the role played by thermal physiology and forest cover in determining the elevational ranges of a lizard, Eutropis longicaudata. We integrated this species’ thermal traits in simulating its maximum activity time under different conditions of forest cover and elevation using a NicheMapR model. In addition, we evaluated the influence of winter temperatures on the range limit by examining the simulated soil temperatures at the occurrence sites.3Laboratory experiments showed that E. longicaudata has a high preferred body temperature and low cold tolerance. The model predicts that maximum activity time decreases with elevation and forest cover. Although unforested areas may provide longer active time in all simulated elevations, mountain areas in Taiwan are heavily forested and are predicted to allow only a very short period of activity above 1000 m elevation.4All sightings were indeed located in areas below 1000 m elevation, in which the predicted average soil temperature is above 10 °C in January in cold years.5Our results show that reptile physiological response does respond strongly to the change of microclimate induced by forest cover and elevation. Overall, this suggests that forest cover is a major determinant of some reptiles’ elevational range.  相似文献   

6.
Abstract The expansion of urban areas and adjacent farming land into natural landscapes modifies habitats and produces small isolated pockets of native vegetation. This fragmentation of the natural habitat subdivides animal communities, reduces population sizes and increases vulnerability to extinction. In this paper we investigate whether fragmentation decreases lizard species richness, composition, overall abundance and abundance at the species level. Urban remnants consisting of five small (< 10 ha) and four large (> 10 ha) fragments of natural bushland were paired with continuous bushland areas located near Hobart, Tasmania, Australia. These remnants were surveyed six times, using pitfall traps, from November 2001 to March 2002. Lizard species richness and abundance were not significantly influenced by habitat fragmentation or fragment size. Egernia whitii was the only lizard species significantly influenced by fragment size, and was only present in large fragments and continuous bush. Vegetation type and structure as well as environmental variables (geology and aspect) influenced the structure of reptile communities. Lizard species that were able to use a number of different habitat types were found to persist at most sites, irrespective of fragment size. Edge environment did not significantly influence lizard species richness or abundance in remnant areas. Lizard species richness was significantly lower in sites that had a high ratio of exotic to native plant species. Therefore, if remnants continue to be invaded by exotic plants, lizard species that require native plant communities will become increasingly vulnerable to local extinction. Our results suggest that lizard species requiring specialized habitats, such as E. whitii, may persist in large urban remnants rather than small urban remnants because large reserves are more likely to encompass rare habitats, such as rocky outcrops. Habitat heterogeneity, rather than size, may be the key to their persistence.  相似文献   

7.
《Zoology (Jena, Germany)》2015,118(4):281-290
One of the fundamental goals in macroecology is to understand the relationship among species’ geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes.  相似文献   

8.
The overall biology of ectotherms is strongly affected by the thermal quality of the environment. The particular conditions prevailing on islands have a strong effect on numerous features of animal life. In this study we compared mainland and island populations of the lizard Lacerta trilineata and hypothesized that insularity would affect the thermoregulatory strategy. Continental habitats were of lower thermal quality, experiencing more intense fluctuations and had higher values of operative temperatures. Nevertheless mainland lizards selected for higher body temperatures in the lab and showed more effective thermoregulation during summer than their island peers. Lizards achieved similar body temperatures in the field in both types of habitat, underlining the importance of predation as a potential factor to mainland lizards that failed to reach their higher thermal preferences. Both island and mainland populations of L. trilineata have been adapted to their thermal environment, supporting the labile view on the evolution of thermal physiology for this species.  相似文献   

9.
Thermal tolerances of organisms play a role in defining geographic ranges and occurrence of species. In Cuba, three sympatric species of Anolis lizards (Anolis allogus, Anolis homolechis and Anolis sagrei) inhabit different thermal microhabitats. A previous study found that these species showed distinct gene expression patterns in response to temperature stimuli, suggesting the genetically distinct thermal physiology among species. To investigate whether the Anolis species inhabiting locally distinct thermal habitats diverge their thermal tolerances, we first conducted behavioural experiments to analyse the temperatures at which the three Anolis species escape from heat source. Then, for each of the three species, we isolated cDNA encoding a putative molecular heat sensor, transient receptor potential ion channel ankyrin 1 (TRPA1), which has been suggested to play a role on eliciting behavioural responses to heat stimuli. We performed electrophysiological analysis to quantify activation temperature of Anolis TRPA1 to see whether the pattern of divergence in TRPA1 responses is congruent with that of divergence in behavioural responses. We found that temperatures triggering behavioural and TRPA1 responses were significantly lower for shade‐dwelling species (A. allogus) than for sun‐dwelling species (A. homolechis and A. sagrei). The ambient temperature of shade habitats where A. allogus occurs stays relatively cool compared to that of open habitats where A. homolechis and A. sagrei occur and bask. The high temperature thresholds of A. homolechis and A. sagrei may reflect their heat tolerances that would benefit these species to inhabit the open habitats.  相似文献   

10.
Hydric environments are hypothesized to have minor effects on the embryonic development of rigid-shelled turtle eggs due to the low water permeability of the eggshell. However, the water reserve in the eggs may still influence their resistance to environmentally induced dehydration. We incubated rigid-shelled turtle eggs (Pelodiscus sinensis) on different moist substrates (from ? 12 to ? 750 kPa) to test the hypothesis that small rigid-shelled eggs would be sensitive to hydric environments. The hydric treatment significantly affected the incubation period, with eggs incubated in the moistest and driest substrates taking longer to hatch than those on the medium-moisture substrates. Hatching success was slightly lower for eggs incubated in dry conditions than those in wet conditions, but the difference was not statistically significant. The heart rates of early embryos were lower on moist substrates than those on dry substrates, but this difference disappeared in late embryos. Hatchlings from the moistest substrate were larger (in carapace length and width) and heavier than those from drier substrates. However, the dry body mass of the hatchlings did not differ among the hydric treatments. The functional performance (righting response) of the hatchlings was affected by the hydric environment. The time to right was shorter for the hatchlings from the substrate of ? 12 kPa than those from ? 220 kPa. These results are consistent with the hypothesis that the hydric environment may significantly affect developing embryos and the resulting hatchlings in turtle species, such as P. sinensis, with small rigid-shelled eggs.  相似文献   

11.
Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side‐blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1–2 m2) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population.  相似文献   

12.
We studied, at 2200 m altitude, the thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali, in the glacial cirque of Cotatuero (National Park of Ordesa, Huesca, Spain). The preferred thermal range (PTR) of I. bonnali indicates that it is a cold-adapted ectotherm with a narrow PTR (29.20–32.77 °C). However, its PTR (3.57 °C) is twice as wide as other Iberolacerta lizards, which may be explained by its broader historical distribution. The studied area is formed by a mosaic of microhabitats which offer different operative temperatures, so that lizards have, throughout their entire daily period of activity, the opportunity to choose the most thermally suitable substrates. I. bonnali achieves an effectiveness of thermoregulation of 0.95, which makes it the highest value found to date among the Lacertidae, and one of the highest among lizards. Their relatively wide distribution, their wider PTR, and their excellent ability of thermoregulation, would make I. bonnali lizards less vulnerable to climate change than other species of Iberolacerta. Thanks to its difficult access, the studied area is not visited by a large number of tourists, as are other areas of the National Park. Thus, it is a key area for the conservation of the Pyrenean rock lizard. By shuttling between suitable microhabitats, lizards achieve suitable body temperatures during all day. However, such thermally suitable microhabitats should vary in other traits than thermal quality, such as prey availability or predation risk. Hence, it seems that these not-thermal traits are not constraining habitat selection and thermoregulation in this population. Therefore, future research in this population may study the causes that would lead lizards to prioritize thermoregulation to such extent in this population.  相似文献   

13.
Habitat modification alters several aspects of the original fauna, among them the opportunity for thermoregulation. Here, we studied the thermal biology of sympatric populations of two lizard species (Liolaemus multimaculatus and Liolaemus wiegmannii) in two different situations; a grassland without trees (natural habitat) and in a grassland plus the exotic tree Acacia longifolia (modified habitat), aiming to assess whether the structural alteration of native Pampean coastal grasslands of Argentina affects the thermal biology of these lizards. Field body temperatures, laboratory preferred temperatures, micro-environmental temperatures, operative temperatures, thermoregulatory efficiency and spatial distribution of each species were analyzed in both habitats. Environmental operative temperature was 0.64 °C lower in the modified habitat (Te=38.39 °C) than in the natural (Te=39.03 °C). Thermoregulatory efficiency (E) of L. wiegmannii was lower in modified sites (E=0.58) than in natural sites (E=0.70). This difference may be because this lizard occupied shaded microhabitats under acacias, with suboptimal thermal features. In contrast, L. multimaculatus in the modified habitat restricted its activity to open microenvironments that retained a similar structure to that of the native habitat, while maintaining high thermoregulatory efficiency in both habitat types (Emodified=0.92; Enatural=0.96). Although these two lizard species are phylogenetically close, they respond differently to human-induced changes in their thermal environments. The introduction of A. longifolia into coastal grasslands for L. wiegmannii in particular, this introduction converts its native habitat into a suboptimal thermal environment.  相似文献   

14.
Lophelia pertusa is the world's most common and widespread framework-forming cold-water coral. It forms deep-water coral reefs and carbonate mounds supporting diverse animal communities on the continental shelf and on seamounts. These recently discovered ecosystems have been damaged by deep-sea fishing and are threatened by predicted shallowing of the aragonite saturation horizon. Despite this, very little is known about the ecophysiology of L. pertusa and its likely response to environmental changes. Here we describe the first study of the respiratory physiology of L. pertusa and the effects of altered temperature and oxygen level. This study shows that L. pertusa can maintain respiratory independence over a range of PO2 illustrated by a high regulation value (R = 78%). The critical PO2 value of 9-10 kPa is very similar to the lower values of oxygen concentration recorded in the field. This suggests that oxygen level may be a limiting factor in the distribution of this cold-water coral. L. pertusa survived periods of anoxia (1 h), hypoxia (up to 96 h), but high Q10 values revealed sensitivity to short-term temperature changes (6.5-11 °C). For the first time vital data have been gathered on the physiology of this species that is essential to understand distribution and underpin future climate change studies.  相似文献   

15.
Abstract:Epiphytic lichens (and some non-lichenized fungi) on 34 coppices (204 stems) ofCorylus avellana were investigated in a 140 ha study area in south-western Norway. A total of 65 species were recorded on a total bark area of 63 m2. Corylus in broad-leaved deciduous forest supported more species of macrolichens, and fewer species of microlichens, than Corylus in pine forest. The macrolichen flora of the deciduous forest differed from that of the pine forest by having a rich flora of species belonging to the Lobarion alliance. OldCorylus coppices with tall stems (>8 m), large girth (>8 cm diameter at breast height) and a noticeable cover of macrolichens (>10% of bark area) supported the highest number of rare species, and overall, species of macrolichens. More than 50% cover of microlichens indicated richness and rarity of microlichens on Corylus.  相似文献   

16.
We investigated long-term trends in brown macroalgal assemblages inhabiting shallow subtidal rocky bottoms under the influence of thermal effluent discharge from the Brazilian nuclear power plant (BNPP). Three operational periods based on the units of the BNPP were analysed: T0 = pre-operational, between the years 1980 and 1983; T1 = operational period of unit 1, between 1988 and 1999; and T2 = operational period of units 1 and 2, between 2005 and 2012. Using generalized linear mixed models (GLMMs), we found significant declines in the numbers of genera and species over time. More than half of the species of brown macroalgae disappeared during T2. In addition, the numbers of macroalgal genera and species were inversely related to the local surface seawater temperatures. Multivariate analyses revealed a clear separation between the years of T2 and those of T0, indicating long-term changes in the community assemblages. Among the most common species in the area, the frequencies of Canistrocarpus cervicornis, Dictyopteris delicatula, Hincksia mitchelliae, Sargassum spp. and Sphacelaria tribuloides decreased during T2, while Padina gymnospora maintained rather high yearly frequencies during T2 (>40%). Our data suggest that seawater temperatures consistently higher than 30 °C together with peaks higher than 35 °C may have triggered the decline in the brown algae on rocky bottoms under the influence of the BNPP discharge. These results from southern Brazil are consistent with studies from other locations that ascribe changes in seaweed diversity to increasing seawater temperatures, highlighting the sensitivity of brown macroalgae to thermal stress and demonstrating their effectiveness as an ecological indicator for monitoring the effects of nuclear power plant effluents on coastal environments.  相似文献   

17.
Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2) fluxes by analysing a 10‐year (2008–2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2 sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2 source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high‐WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2 source, as opposed to being a sink or neutral for CO2 in other years. Furthermore, the extreme inundation in 2016 was followed by a 4‐month postinundation period with lower net ecosystem CO2 uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2 balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2 sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.  相似文献   

18.
Ecomorphological theory indicates that different ecological requirements lead to different organismal designs. Given that species with equal requirements could not coexist, traits leading to more efficient use of resources may be selected to avoid competition among closely related syntopic species, generating specialized ecomorphs. We compared habitat use, diet, thermal biology and morphology among the syntopic Tropidurus semitaeniatus, T. helenae and T. hispidus in the Caatinga of Northeastern Brazil. Tropidurus semitaeniatus and T. helenae are flattened lizards specialized to rocks and rock crevices, whereas T. hispidus has a robust body and generalist habits. We aimed to test the hypothesis that morphological modifications observed in the flattened ecomorphs are related to modifications in diet and habitat use. Also, we hypothesized that specialization to habitat induces morphological modifications, which in turn may constrain lizard performance. Flattened species differed in habitat use, morphology and prey size when compared with the generalist ecomorph. Morphological modifications were related to specializations to rocky habitats and constrained the variety of prey items consumed. This phenotype also reduced their reproductive output when compared with a robust, generalist ecomorph.  相似文献   

19.
Extensive evidence shows that incubation conditions can affect phenotypic traits of hatchling reptiles, but the relative importance of thermal versus hydric factors, and the proximate mechanisms by which such factors influence hatchling phenotypes, remain unclear for most species. We incubated eggs of an Australian scincid lizard, Lampropholis guichenoti, at four different moisture contents ranging from -500 to 0 kPa. Drier substrates reduced water uptake of eggs and resulted in smaller hatchlings, but other phenotypic traits (incubation periods, hatchling sex, body proportions, running speeds, growth rates post-hatching) were not affected by the hydric environment during incubation. Contrary to our prediction, lower water uptake during incubation (and hence, presumably, more viscous blood) did not affect embryonic heart rates. Thus, as in many other squamate species, hatchling phenotypes and embryonic developmental rates of L. guichenoti are less sensitive to hydric conditions in the nest than to thermal regimes.  相似文献   

20.
This studyexamines the effects of weight loss by caloric restriction (WL) andaerobic exercise plus weight loss (AEx+WL) on total and regional bonemineral density (BMD) in older women. Healthy,postmenopausal women [age 63 ± 1 (SE) yr] not onhormone-replacement therapy underwent 6 mo of WL(n = 15) consisting of dietarycounseling one time per week with a caloric deficit (250-350kcal/day) or AEx+WL (n = 15)consisting of treadmill exercise three times per week in addition tothe weight loss. Maximal aerobic capacity increased only in the AEx+WLgroup (P < 0.001). Body weight,percent fat, and fat mass decreased similarly in both groups(P < 0.005), with no changesin fat-free mass. Total body BMD (by dual-energy X-rayabsorptiometry) decreased in both groups(P < 0.05). Femoral neck, Ward'striangle, and greater trochanter BMD decreased in the WL group(P  0.05) but were not significantlydifferent after AEx+WL.L2-L4BMD did not significantly change in either group. Thus WL andAEx+WL both result in losses of totalbody BMD; however, AEx+WL appears to prevent the loss in regional BMDseen with WL alone in healthy, older women. This suggests that theaddition of exercise to weight-loss programs may reduce the risk forbone loss.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号