首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C.  相似文献   

2.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

3.
Bioluminescent bacteria in the form of a cell suspension for on-site hazard analysis are not suitable as in vivo luminescence in free cells fluctuates and may lead to erroneous results. Furthermore, the culture broth cannot be stored for long durations to continue sensing analytes as the luminescence ceases over time. Factors that affect luminescence response include growth dynamism, and ambient environmental conditions. The present study investigated the effect of storage conditions such as temperature (25 ± 2°C, room temperature; 4°C; and −20°C) and ambient aqueous environment (M1: sucrose, 1.02 M; M2, bioluminescent media [tryptone, 10 g L−1; NaCl, 28.5 g L−1; MgCl2.7H2O, 4.5 g L−1; CaCl2, 0.5 g L−1; KCl 0.5 g L−1; yeast extract, 1 g L−1; H2O, 1 L]; M3, bioluminescent media and 95% glycerol, 1:1 ratio) on the luminescence emission from the calcium alginate-immobilized Photobacterium phosphoreum (Sb) against the cells in free suspension for an extended period. The results indicated that both the parameters that were undertaken markedly affected the luminescence. In the study, Sb showed an enhanced luminescence emission than the control up to 18.5-fold and for a prolonged period which can be efficiently utilized for rapid biosensing of hazardous materials.  相似文献   

4.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

5.
Frequent off-flavor events caused by geosmin and 2-methylisoborneol (MIB) have attracted research on the main producers, cyanobacteria. This study evaluated the effects of light and temperature on the odor production of MIB-producing Pseudanabaena sp. Lauterborn and geosmin-producing Anabaena ucrainica (Schhorb.) Watanabe. The maximum MIB production and lowest growth rate (indicated by the chlorophyll a (Chl a)) were observed at 35 °C compared with that at 10 °C and 25 °C. Cultures grown under a light intensity of 60 μmol photons m−2 s−1 demonstrated the highest MIB production and minimum growth rate, whereas the minimum MIB production and maximum growth rate were obtained under 10 μmol photons m−2 s−1. Similar patterns were observed for geosmin production. A. ucrainica had the highest geosmin production and lowest Chl a concentration under 10 °C and 60 μmol photons m−2 s−1. Moreover, greater proportions of geosmin and MIB were released into extracellular under growth-inhibiting temperatures and light intensities. An inverse correlation between odor production and the cell growth rate was suggested, and this relationship may reflect the competition for substrates of odor and Chl a synthesis. Thus, the accumulation of geosmin and MIB was probably the result of decreased cellular metabolic activity in cyanobacteria.  相似文献   

6.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

7.

To enhance the multiplication rate in Musa acuminata Colla (banana; ‘Grand Nain’) organogenesis, higher amounts of thiamine along with different sugar types and concentrations were evaluated at the proliferation phase. Thiamine at 1, 10, 50, 100, and 200 mg L−1 was compared with 0.1 mg L−1 thiamine found in conventional Murashige and Skoog (MS) medium. Maximum proliferation of banana was induced with 100 mg L−1 thiamine. Additionally, 15, 30, and 45 g L−1 sucrose, glucose, fructose, and sorbitol combined with regular and optimal levels of thiamine were tested. Glucose at 30 g L−1 most improved shoot proliferation alone and enhanced shoot proliferation further, when combined with 100 mg L−1 thiamine, followed by sucrose and fructose, whereas sorbitol completely inhibited growth and caused tissue browning. All evaluated vegetative traits were significantly affected by sugar type and concentration, and thiamine levels, unlike the photosynthetic pigments. Moreover, genetic stability of the plants recovered from the enhanced protocol was confirmed by inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. A total of 230 bands generated by both marker types were monomorphic for the randomly selected regenerated plants, compared with their mother plant. Thus, the proliferation medium supplemented with 30 g L−1 glucose and 100 mg L−1 thiamine could be recommended for banana organogenesis. Results herein are of great importance and helpful in enhancing the commercial in vitro propagation protocols of banana, without the need of increasing the number of subcultures, which can cause somaclonal variation.

  相似文献   

8.
The effect of carrageenan on the immune response of white shrimp Litopenaeus vannamei, was studied in vitro and in vivo. Shrimp haemocytes receiving carrageenan at 1 mg ml−1 experienced change in cell size, reduction in cell viability, increase in PO activity, serine proteinase activity, and RB in vitro. Shrimp received carrageenan via immersion at 200, 400 and 600 mg L−1 after 3 h and orally at 0.5, 1.0 and 2.0 g kg−1 after 3 weeks showed higher proliferation of haematopoietic tissues (HPTs) together with increases in haemocyte count and other immune parameters. Shrimp that fed a diet containing carrageenan at 0.5 g kg−1 after 3 weeks significantly up-regulated gene expressions of several immune-related proteins. The immune parameters of shrimp that received carrageenan via immersion and orally increased to a plateau after 3 h and after 3 weeks, but decreased after 5 h and 6 weeks, respectively. Phagocytosis and clearance of Vibrio alginolyticus remained high in shrimp that had received carrageenan via immersion after 5 h and orally after 6 weeks, respectively. Resistances of shrimp against V. alginolyticus and white spot syndrome virus were higher over 24–144 h and 72–144 h, respectively in shrimp that received carrageenan at 600 mg L−1 via immersion after 3 and 5 h. It was concluded that carrageenan effectively triggers an innate immunity in vitro, and increases mitotic index of HPT, immune parameters, gene expressions and resistance against pathogens in vivo. Shrimp received carrageenan via immersion and orally exhibited immunocompetence in phagocytosis and clearance of V. alginolyticus, and resistance to pathogen despite the trend in immune parameters to recover to background values.  相似文献   

9.
Different stocking densities were investigated in larviculture and feeding of Lophiosilurus alexandri, as well as analyses of the effects on juveniles of two size‐classes and two different commercial formulated diets. The first experiment was two‐phased: (a) larvae stocked at densities of 60, 120, 180, 240, and 300 larvae L−1 fed with Artemia nauplii and reared for 15 days; (b) in phase 2, densities of 5, 10, 15, 30, and 40 juveniles L−1 were evaluated during feed training (20 days). Mean water temperature in both phases was 28°C. In the first phase of experiment 1, the different stocking densities did not affect fish growth or survival. In phase 2, growth was similar in all densities; however, survival was lower at higher densities. The increased density provided a rise in biomass and number of individuals produced in both phases. In the second experiment, two size‐classes of feed‐trained juveniles (30.22 ± 1.84 and 34.66 ± 2.41 mm) were given pellets of two different diameters (1.2 and 2.6 mm) for 20 days. The largest juveniles fed the 1.2 mm inert diet had higher final weights and lengths. Larviculture and feed training of L. alexandri can thus be performed successfully at high stocking densities of 300 larvae L−1 during the first 15 days of feeding, and at densities of up to 40 juveniles L−1 during the 20 days of feed training, respectively.  相似文献   

10.
In this study, the probiotic, Bacillus subtilis E20, isolated from the human health food, natto, was used for white shrimp, Litopenaeus vannamei, larvae breeding to improve the larval survival rate and development by adding probiotic to the rearing water at (control), 108, and 109 cfu L?1 salt water once every 3 days during the 14 days of breeding experiment. Thereafter, stress tolerance and immune status of postlarvae were evaluated. Shrimp larval development was significantly accelerated after adding the probiotic to the larval rearing water at a level of 109 cfu L?1. The survival rate of larvae was significantly higher in the treatment with 109 cfu L?1 compared to the control and the treatment with 108 cfu L?1 after all larvae had metamorphosed to postlarvae. Adding the probiotic to the shrimp larvae rearing water produced a weak inhibition of bacterial growth by an analysis of the total bacterial count and presumptive Vibrio count. For stress tests, no postlarvae died when they were reared in water in which the temperature was decreased from 30 to 2 °C at a rate of 0.1 °C min?1. Postlarvae had significantly lower cumulate mortality in the treatments with 108 and 109 cfu L?1 compared to the control when they were suddenly exposed to fresh water and 60‰ salt water. A significant decrease in the cumulative mortality of postlarvae treated with the probiotic at a level of 109 cfu L?1 was recorded after the sudden transfer to 300 mg L?1 nitrite-N compared to the control and treatment with 108 cfu L?1. The analysis of immune-related gene expressions showed that the gene expression of prophenoloxidase I, prophenoloxidase II, and lysozyme of larvae were significantly increased after being reared in probiotic-containing water at the levels of 108 and 109 cfu L?1. However, no significant difference in serine proteinase or glutathione peroxidase gene expressions was recorded in this study. It is therefore suggested that 109 cfu L?1 of probiotic, B. subtilis E20 adding to rearing water for shrimp larva breeding.  相似文献   

11.
The aim of this study was to verify the effects of the interaction between different temperatures and levels of dissolved oxygen in the oxidative stress parameters of pacu juveniles. A total of 81 pacu juveniles (61.7 ± 9.1 g) were exposed to three temperatures (18, 23, and 28 °C), acclimated for a period of 30 days, and then submitted to three levels of dissolved oxygen: control or normoxia (7 mg L−1); moderate hypoxia (4 mg L−1); and severe hypoxia (2 mg L−1) for 12 h. Glutathione-S-transferase (GST) activity, total antioxidant capacity against peroxyl radicals (ACAP), and protein thiol content (PSH) and LPO (lipid peroxidation) [measured by the TBARS] were measured in gill, liver, muscle and brain. The results indicated that the interaction between different temperatures and dissolved oxygen levels caused alterations in the antioxidant system and induced lipid and protein damage in pacu juveniles. In addition, the effects were organ specific. In conclusion, exposure to moderate and severe hypoxia affect oxidative stress parameters and have been shown to be organ-specific in pacu juveniles. The interaction between 23 °C and hypoxia caused greater disturbances in oxidative stress markers, such as PSH in the gills and liver and LPO in the muscle.  相似文献   

12.
Embryogenic calli of Dioscorea bulbifera L. were successfully cryopreserved using an encapsulation-vitrification method. Embryogenic calli were cooled at 6°C for 5 days on solid MS medium (Murashige and Skoog 1962) containing 2 mg L−1 Kinetin (Kn), 0.5 mg L−1 α-naphthalene acetic acid (NAA) and 0.5 mg L−1 2,4-dichlorophenoxy-acetic acid (2,4-D). These were prior precultured on liquid basal MS medium enriched with 0.75 M sucrose at 25 ± 1°C for 7 days. Embryogenic calli were osmoprotected with a mixture of 2 M glycerol and 1 M sucrose for 80 min at 25°C and dropped in a 0.1 M CaCl2 solution containing 0.4 M sucrose at 25 ± 1°C. After 15 min of polymerization, Ca-alginate beads (about 4 mm in diameter) were dehydrated for 150 min at 0°C in a PVS2 solution [30% glycerol, 15% ethylene glycol, and 15% dimethyl sulfoxide (w/v)] containing 0.5 M sucrose. The encapsulated embryogenic calli were then plunged directly into LN (liquid nitrogen) for 1 h. After rapid thawing in a water bath (37°C; 2 min), the beads were washed 3 times at 10-min intervals in liquid basal MS medium containing 1.2 M sucrose. Following thawing, the embryogenic calli were transferred to fresh solid basal MS media supplemented with Kn 2 mg L−1, 0.09 M sucrose and 0.75% (w/v) agar (embryoid induction medium) and cultured under light conditions of 12-h photoperiod with a light intensity of 36 μmol m−2 s−1 provided by white cool fluorescent tubes after a 2-day dark period at 25 ± 1°C. After 30 days, the embryoids developed from embryogenic calli were transferred to fresh solid basal MS media supplemented with Kn 2 mg L−1, NAA 0.5 mg L−1, 3% (w/v) sucrose and 0.75% (w/v) agar (regeneration medium). After 60 days, the embryogenic calli developed normal shoots and roots. No morphological abnormalities were observed after plating on the regeneration medium. The survival rate of encapsulated vitrified embryogenic callus reached over 70%. This encapsulation-vitrification method appears promising as a routine and simple method for the cryopreservation of Dioscorea bulbifera embryogenic callus.  相似文献   

13.

Pfaffia glomerata has potential pharmacological and medicinal properties due to the production of a secondary metabolite known as the phytoecdysteroid 20-hydroxyecdysone (20E). There have been increasing efforts for massive in vitro propagation of Pfaffia plants due to high extractivism and overharvesting of this species. Research on the species has shown that photoautotrophic cultivation can improve the production of 20E. In addition, other abiotic factors such as the formulations of culture media can influence the morphophysiological behavior of the plants in vitro. Therefore, the objective of this study was to analyze the morphological and physiological performances of P. glomerata plants in different formulations of culture media, under photoautotrophic and photomixotrophic propagation conditions. Six medium formulations, the Driver and Kuniyuki medium (DKW), Correia et al. medium (JADS), Murashige and Skoog medium (MS), Quoirin and Lepoivre medium (QL), Rugini medium (OM), and Woody Plant medium (WPM), all supplemented with DKW vitamins, 100 mg L−1 myo-inositol, 6.5 g L−1 agar, and with or without 3% (w/v) sucrose, were evaluated. Cultures were maintained at 25 ± 2°C, with a 16 h-photoperiod under 60 μmol m−2 s−1 of irradiance under a fluorescent lamp for 50 d. Results showed that the presence or absence of sucrose, and the different nutritional formulations influenced growth, photosynthetic pigment content, endogenous levels of sugars, leaf morphology, levels of 20E, and transport of water and minerals in P. glomerata. Notably, OM, DKW, QL, and WPM media promoted higher production of 20E under photomixotrophic growth conditions.

  相似文献   

14.

This study evaluated the production of cellulolytic enzymes from different agricultural residues. The crude enzyme extract produced was characterized and applied for saccharification of some agricultural residues. Maximum cellulolytic activities were obtained using soybean hulls. All enzymatic activities were highly stable at 40 °C at a pH range of 4.5–5.5. For stability at low temperatures, the enzyme extract was stored at freezing temperature and cooling for about 290 days without major loss of activity. The Km values found for total cellulase (FPase), endoglucanase (CMCase), and xylanase were 19.73 mg ml−1, 0.65 mg ml−1, and 22.64 mg ml−1, respectively, and Vmax values were 0.82 mol min−1 mg−1, 0.62 mol min−1 mg−1, and 104.17 mol min−1 mg−1 to cellulose, carboxymethyl cellulose, and xylan, respectively. In the saccharification tests, the total amount of total reducing sugars (TRS) released from 1 g of soybean hulls catalyzed by the enzymes present in the crude enzyme extract was 0.16 g g−1 dry substrate.

  相似文献   

15.
Taste and odor (T & O) episodes always cause strong effects on drinking water supply system. Luanhe River diversion into Tianjin City in China is an important drinking water resource. Massive growth of a benthic filamentous cyanobacterium with geosmin production in the open canal caused a strong earthy odor episode in Tianjin. On the basis of the morphological and molecular identification of this cyanobacterium as Oscillatoria limosa Agardh ex Gomont, the genetic basis for geosmin biosynthesis and factors influencing growth and geosmin production of O. limosa CHAB 7000 were studied in this work. A 2268-bp open reading frame, encoding 755 amino acids, was amplified and characterized as the geosmin synthase gene (geo), followed by a cyclic nucleotide-binding protein gene (cnb). Phylogenetic analysis implied that the evolution of the geosmin genes in O. limosa CHAB 7000 might involve a horizontal gene transfer event. Examination on the growth and geosmin production of O. limosa CHAB 7000 at different light intensities showed that the maximum geosmin production was observed at 10 μmol photons m−2 s−1, while the optimum growth was at 60 μmol photons m−2 s−1. Under three temperature conditions (15 °C, 25 °C, and 35 °C), the maximum growth and geosmin production were observed at 25 °C. Most amounts of geosmin were retained in cells during the growth phase, but high temperature and low light intensity increased the release of geosmin into the medium, implying that O. limosa CHAB 7000 had a high potential harm for the release of geosmin from its cells at these adverse conditions.  相似文献   

16.
Gui  Mengyao  Chen  Qian  Ma  Tao  Zheng  Maosheng  Ni  Jinren 《Applied microbiology and biotechnology》2017,101(4):1717-1727

Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L−1 h−1), higher nitrite accumulation (47.3∼99.8 mg L−1), and higher N2O emission ratios (5∼283 mg L−1/mg L−1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L−1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L−1) > Cu(II) (0.5∼5 mg L−1) > Ni(II) (2∼10 mg L−1) > Zn(II) (25∼50 mg L−1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  相似文献   

17.
A kinetic model has been developed to estimate the specific growth rate of Phaeodactylum tricornutum in batch cultures. The cultures were carried out in a laboratory scale photobioreactor. Some factors like pH, temperature and irradiance were studied. In the first case, an optimum pH of 7.8 and a specific growth rate of 0.064 h−1 were achieved for certain nitrate conditions and illumination. The temperature influence has been modelled by a modified Sinclair model. The optimum temperature was achieved at 20.4 °C in aerated cultures and at 22.3 °C in non-aerated cultures. Better adaptation to low temperatures than high ones has been obtained. The experiments carried out with different irradiances drive to a simple Monod's equation for the irradiance influence on growth, with semi-saturation irradiance of 10.2 μEinstein−2 s−1 in aerated cultures and of 6.8 μEinstein m−2 s−1 in non-aerated cultures.  相似文献   

18.
The aim of this study was to compare two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds in terms of the relationship between the increase in ambient temperature and the responses of the evaporative heat loss pathways and the effects on homeothermy. In the experiment, six heifers of the Alentejana, Frisian, and Mertolenga breeds and four heifers of the Limousine breed were used. The animals were placed in four temperature levels, the first one under thermoneutral conditions and the other ones with increase levels of thermal stress. When submitted to severe heat stress, the Frisian developed high thermal tachypnea (125 mov/min) and moderate sweating rates (117 g m−2 h−1), which did not prevent an increase in the rectal temperature (from 38.4 °C to 40.0 °C). Moderate increases in rectal temperature were observed in the Alentejana (from 38.8 °C to 39.4 °C) and Limousine (from 38.6 °C to 39.4 °C), especially in the period of highest heat stress. The Limousine showed moderate levels of tachypnea (101 mov/min) while showing the lowest sweating rates. The Alentejana showed significant increases in sweating rate (156 g m−2 h−1) that played a major role in homeothermy. The Mertolenga showed a superior stability of body temperature, even in the period of highest heat stress (from 38.5 °C to 39.1 °C). Uncommonly, the maintenance of homeothermy during moderate heat stress was achieved primarily by intense tachypnea (122 mov/min). The sweating rate remained abnormally low under conditions of moderate heat stress, rising significantly (110 g m−2 h−1) without evidence of stabilization, only when tendency for heat storage occurred. This unusual response of the evaporative heat loss pathways infers a different thermoregulatory strategy, suggesting a different adaptation to semi-arid environment and strong association with water metabolism.  相似文献   

19.
《Aquatic Botany》2005,81(3):245-251
The effect of high population densities on the growth rate of Lemna minor (L.) was studied under laboratory conditions at 23 °C in a medium with sufficient nutrients. At high population densities, we found a non-linear decreasing growth rate with increasing L. minor density. Above a L. minor biomass of ca. 180 g dry weight (DW) m−2, the net growth rate became negative. At a density of 9 g DW m−2, a maximum relative growth rate of ca. 0.3 d−1 was found. At very low densities (<9 g m−2), we observed an inverse density dependence (or Allee effect). Probably, this lower growth rate was due to lower local temperatures within such partly covered L. minor decks. On the basis of these experimental results and literature data, a simple model was created. To test the model, the density of duckweed in three different Dutch ditches was monitored for 9 weeks in spring. Within this period, full coverage of the ditches by duckweed was reached. The maximum density increased with rising air temperature. The model described the field data well, suggesting that crowding is an important factor in limitation of duckweed growth.  相似文献   

20.

The microalgae Scenedesmus abundans cultivated in five identical airlift photobioreactors (PBRs) in batch and fed-batch modes at the outdoor tropical condition. The microalgae strain S. abundans was found to tolerate high temperature (35–45 °C) and high light intensity (770–1690 µmol m− 2 s− 1). The highest biomass productivities were 152.5–162.5 mg L− 1 day− 1 for fed-batch strategy. The biomass productivity was drastically reduced due to photoinhibition effect at a culture temperature of > 45 °C. The lipid compositions showed fatty acids mainly in the form of saturated and monounsaturated fatty acids (> 80%) in all PBRs with Cetane number more than 51. The fed-batch strategies efficiently produced higher biomass and lipid productivities at harsh outdoor conditions. Furthermore, the microalgae also accumulated omega-3 fatty acid (C18:3) up to 14% (w/w) of total fatty acid at given outdoor condition.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号