首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Survivin is a member of the inhibitor of apoptosis protein family that is overexpressed in various tumors and is important in restricting apoptosis. Understanding the molecular events of apoptosis may provide information for developing novel therapeutic agents targeting non-small cell lung cancer (NSCLCs). This study used three human NSCLC cell lines, NCI-H1299, SK-MES-1, and NCI-H460. Changes in apoptosis, the mRNA and protein expression of survivin under normoxia and hypoxia, with or without rapamycin treatment were analyzed. In addition, siRNA and ChIP assay were further applied to demonstrate the role of hypoxia-inducible factor 1 (HIF-1)α in regulating survivin expression regulation under hypoxia during rapamycin induced NSCLC cell apoptosis. Treatment with rapamycin resulted in significantly increased NSCLC cells apoptosis under hypoxia. We demonstrated for the first time that rapamycin inhibited hypoxia-induced survivin expression in NSCLC cell lines. We further demonstrated that HIF-1α participated in hypoxia-induced survivin expression, and that rapamycin inhibited hypoxia-induced HIF-1α expression by enhancing its degradation. The results above collectively showed that rapamycin inhibits HIF-1α-induced survivin expression under hypoxia to induce NSCLC apoptosis.  相似文献   

2.
Exercise under acute hypoxia elicits a large increase in blood lactate concentration ([La](b)) compared with normoxic exercise. However, several studies in humans show that with the transition to chronic hypoxia, exercise [La](b) returns to normoxic levels. Although extensively examined over the last decades, the muscle-specific mechanisms responsible for this phenomenon remain unknown. To assess the changes in skeletal muscle associated with a transition from acute to chronic hypoxia, CD-1 mice were exposed for 24 h (24H), 1 wk (1WH), or 4 wk (4WH) to hypobaric hypoxia (equivalent to 4,300 m), exercised under 12% O(2), and compared with normoxic mice (N) at 21% O(2). Since the enzyme pyruvate dehydrogenase (PDH) plays a major role in the metabolic fate of pyruvate (oxidation vs. lactate production), we assessed the changes in its activity and regulation. Here we report that when run under hypoxia, 24H mice exhibited the highest blood and intramuscular lactate of all groups, while the 1WH group approached N group values. Concomitantly, the 24H group exhibited the lowest PDH activity, associated with a higher phosphorylation (inactive) state of the Ser(232) residue of PDH, a site specific to PDH kinase-1 (PDK1). Furthermore, protein levels of PDK1 and its regulator, the hypoxia inducible factor-1α (HIF-1α), were both elevated in the 24H group compared with N and 1WH groups. Overall, our results point to a novel mechanism in muscle where the HIF-1α pathway is desensitized in the transition from acute to chronic hypoxia, leading to a reestablishment of PDH activity and a reduction in lactate production by the exercising muscles.  相似文献   

3.
4.
Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver, and liver injury. This study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild-type (WT), CYP2E1-knock-in (KI), and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair-fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolyl hydroxylase 2, which promotes HIF-1α degradation, were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol-fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were colocalized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells, which express CYP2E1, with ethanol plus arachidonic acid (AA) or ethanol plus buthionine sulfoximine (BSO), which depletes glutathione, caused loss of cell viability to a greater extent than in HepG2 C34 cells, which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than in C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced by ethanol/AA or ethanol/BSO in the E47 cells. These results suggest that CYP2E1 plays a role in ethanol-induced hypoxia, oxidative stress, and activation of HIF-1α and that HIF-1α contributes to CYP2E1-dependent ethanol-induced toxicity. Blocking HIF-1α activation and actions may have therapeutic implications for protection against ethanol/CYP2E1-induced oxidative stress, steatosis, and liver injury.  相似文献   

5.
6.
7.
8.

Background

Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines.

Methods

LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival.

Results

Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217?cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217?cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217?cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced.

Conclusion

Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated.  相似文献   

9.
Molecular Biology Reports - The research literature suggests that different training modalities cause various patterns in training-induced genes expression. This study aimed to investigate the...  相似文献   

10.
11.
The adult human anterior cruciate ligament (ACL) has a poor functional healing response, whereas the medial collateral ligament (MCL) does not. The difference in intrinsic properties of these ligament cells can be due to their different response to their located microenvironment. Hypoxia is a key environmental regulator after ligament injury. In this study, we investigated the differential response of ACL and MCL fibroblasts to hypoxia on hypoxia-inducible factor-1α, vascular endothelial growth factor, and matrix metalloproteinase-2 (MMP-2) expression. Our results show that ACL cells responded to hypoxia by up-regulating the HIF-1α expression significantly as compared to MCL cells. We also observed that in MCL fibroblasts response to hypoxia resulted in increase in expression of VEGF as compared to ACL fibroblasts. After hypoxia treatment, mRNA and protein levels of MMP-2 increased in both ACL and MCL. Furthermore we found in ACL pro-MMP-2 was converted more into active form. However, hypoxia decreased the percentage of wound closure for both ligament cells and had a greater effect on ACL fibroblasts. These results demonstrate that ACL and MCL fibroblasts respond differently under the hypoxic conditions suggesting that these differences in intrinsic properties may contribute to their different healing responses and abilities.  相似文献   

12.
AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate test) in normoxia and in severe acute hypoxia (inspired Po(2): 75 mmHg). Vastus lateralis muscle biopsies were obtained before and immediately after 30 and 120 min postsprint. Mean power output and O(2) consumption were 6% and 37%, respectively, lower in hypoxia than in normoxia. O(2) deficit and muscle lactate accumulation were greater in hypoxia than in normoxia. Carbonylated skeletal muscle and plasma proteins were increased after the sprint in hypoxia. Thr(172)-AMPKα phosphorylation was increased by 3.1-fold 30 min after the sprint in normoxia. This effect was prevented by hypoxia. The NAD(+)-to-NADH.H(+) ratio was reduced (by 24-fold) after the sprints, with a greater reduction in hypoxia than in normoxia (P < 0.05), concomitant with 53% lower sirtuin 1 (SIRT1) protein levels after the sprint in hypoxia (P < 0.05). This could have led to lower liver kinase B1 (LKB1) activation by SIRT1 and, hence, blunted Thr(172)-AMPKα phosphorylation. Ser(485)-AMPKα(1)/Ser(491)-AMPKα(2) phosphorylation, a known negative regulating mechanism of Thr(172)-AMPKα phosphorylation, was increased by 60% immediately after the sprint in hypoxia, coincident with increased Thr(308)-Akt phosphorylation. Collectively, our results indicate that the signaling response to sprint exercise in human skeletal muscle is altered in severe acute hypoxia, which abrogated Thr(172)-AMPKα phosphorylation, likely due to lower LKB1 activation by SIRT1.  相似文献   

13.
14.
15.
16.
The aim of this study was to investigate the changes of SDF-1α and ILK expression in mouse retinal pigment epithelium (RPE) cells in response to hypoxia, and the effect of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (Hsp90) inhibitor, on the hypoxia-induced expression of SDF-1α and ILK. RPE cells were cultured with 200 μmol/L cobalt chloride (CoCl2) for different times (1, 3, 6, 12, 24, 72 h) to imitate chemical hypoxia. Pretreatment of 17-AAG was 1 h prior to hypoxic insult. Cellular viability after 17-AAG treatment was assessed by MTT assay, and the changes of SDF-1α and ILK expression were examined by RT-PCR and Western blot. Up-regulation of SDF-1α and ILK expression in response to hypoxia was observed. One hour pretreatment of 17-AAG could remarkably decreased the hypoxia-induced SDF-1α and ILK expression in vitro. Our results indicated that SDF-1α and ILK involved in the hypoxic response of RPE cells, and 1 h pretreatment of 17-AAG had an inhibitive effect on the hypoxia-induced SDF-1α and ILK expression.  相似文献   

17.
Molecular Biology Reports - Coronavirus-19 is still considered a pandemic that influences the world. Other molecular alterations should be clearer besides the increasing cytokine storm and...  相似文献   

18.
The aim of the present study was to test the hypothesis that acute high-intensity interval (HIT) running induces greater activation of signaling pathways associated with mitochondrial biogenesis compared with moderate-intensity continuous (CONT) running matched for work done. In a repeated-measures design, 10 active men performed two running protocols consisting of HIT [6 × 3-min at 90% maximal oxygen consumption (Vo(2max)) interspersed with 3-min recovery periods at 50% Vo(2max) with a 7-min warm-up and cool-down period at 70% Vo(2max)] or CONT (50-min continuous running at 70% Vo(2max)). Both protocols were matched, therefore, for average intensity, duration, and distance run. Muscle biopsies (vastus lateralis) were obtained preexercise, postexercise, and 3 h postexercise. Muscle glycogen decreased (P < 0.05) similarly in HIT and CONT (116 ± 11 vs. 111 ± 17 mmol/kg dry wt, respectively). Phosphorylation (P-) of p38MAPK(Thr180/Tyr182) (1.9 ± 0.1- vs. 1.5 ± 0.2-fold) and AMPK(Thr172) (1.5 ± 0.3- vs. 1.5 ± 0.1-fold) increased immediately postexercise (P < 0.05) in HIT and CONT, respectively, and returned to basal levels at 3 h postexercise. P-p53(Ser15) (HIT, 2.7 ± 0.8-fold; CONT, 2.1 ± 0.8-fold), PGC-1α mRNA (HIT, 4.2 ± 1.7-fold; CONT, 4.5 ± 0.9-fold) and HSP72 mRNA (HIT, 4.4 ± 2-fold; CONT, 3.5 ± 1-fold) all increased 3 h postexercise (P < 0.05) although neither parameter increased (P > 0.05) immediately postexercise. There was no difference between trials for any of the above signaling or gene expression responses (P > 0.05). We provide novel data by demonstrating that acute HIT and CONT running (when matched for average intensity, duration, and work done) induces similar activation of molecular signaling pathways associated with regulation of mitochondrial biogenesis. Furthermore, this is the first report of contraction-induced p53 phosphorylation in human skeletal muscle, thus highlighting an additional pathway by which exercise may initiate mitochondrial biogenesis.  相似文献   

19.
20.
Previously, our laboratory showed that nitric oxide (NO)/cyclic GMP (cGMP)/protein kinase G type‐Iα (PKG‐Iα) signaling pathway plays an important role in preventing spontaneous apoptosis and promoting cell proliferation in both normal cells (bone marrow stromal cells and vascular smooth muscle cells) and certain cancer cells (ovarian cancer cells). In the present study, we investigated the novel role of the cGMP/PKG‐Iα pathway in preventing spontaneous apoptosis, promoting colony formation and regulating phosphorylation of cAMP response element binding (CREB) protein and protein expression of inhibitor of apoptosis proteins (IAPs) and anti‐apoptotic Bcl‐2‐related proteins in NCI‐H460 and A549 non‐small cell lung cancer (NSCLC) cells. 1H‐(1,2,4)oxadiazolo(4,3‐a)quinoxalin‐1‐one (ODQ), which blocks endogenous NO‐induced activation of cGMP/PKG‐Iα, induced apoptosis and decreased colony formation. ODQ also decreased CREB ser133 phosphorylation and protein expression of c‐IAP1, livin, and survivin. DT‐2 (inhibitor of PKG‐Iα kinase activity) increased apoptosis by twofold and decreased CREB ser133 phosphorylation and c‐IAP1, livin, and survivin expression. Gene knockdown of PKG‐Iα expression using small‐interfering RNA increased apoptosis and decreased CREB ser133 phosphorylation, and c‐IAP1, livin, survivin, and Mcl‐1 expression. Inhibition of PKG‐Iα kinase activity with DT‐2 dramatically enhanced pro‐apoptotic effects of the chemotherapeutic agent cisplatin. Combined treatment of DT‐2 and cisplatin increased apoptosis compared with cisplatin or DT‐2 alone, showing a synergistic effect. The data suggest that the PKG‐Iα kinase activity is necessary for maintaining higher levels of CREB phosphorylation at ser133 and protein expression of c‐IAP1, livin, survivin, and Mcl‐1, preventing spontaneous apoptosis and promoting colony formation in NSCLC cells, which may limit the effectiveness of chemotherapeutic agents like cisplatin. J. Cell. Biochem. 113: 3587–3598, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号