首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycerol is not an effective cryoprotectant for rabbit spermatozoa; therefore, rabbit spermatozoa were used as a model for developing cryopreservation procedures for other cell types which also freeze poorly when glycerol is used as the cryoprotectant. Experiments were conducted to 1) compare several published protocols for cryopreserving rabbit spermatozoa; 2) determine if removal of seminal granules, required for flow cytometry analysis, affects the motility of rabbit spermatozoa; and 3) determine if using a combination of cell permeating cryoprotectants (acetamide) with cell nonpermeating cryoprotectants (trehalose and methyl cellulose; MC), can increase the recovery of viable rabbit spermatozoa after cryopreservation. Media containing acetamide as a cryoprotectant were found to be most effective for rabbit spermatozoa. The cryoprotectants ethylene glycol, dimethylsulfoxide and glycerol were not effective for cryopreserving rabbit spermatozoa. Second, rabbit spermatozoa could be centrifuged through a Percoll gradient composed of equal volumes of Prcoll and a HEPES-buffered sperm medium. This centrifugation removed all seminal granules without affecting the percentage of motile spermatozoa after initial sperm dilution (85 vs 74%) or after cryopreservation (35 vs 30%), when sperm were either centrifuged or not centrifuged, respectively. The substitution of trehalose in the cryopreservation medium for raffinose did not improve recovery of motile cells following cryopreservation (P > 0.05). However, addition of MC resulted in higher percentages of motile sperm after cryopreservation (43 vs 31%; P < 0.05). In addition, sperm viability and acrosomal integrity were simultaneously evaluated using flow cytometry. The addition of both trehalose and MC to media containing acetamide resulted in higher percentages of live acrosome-intact cells than acetamide alone (53 vs 37%; P < 0.05). These results indicate that a combination of permeating and nonpermeating cryoprotectants (acetamide, trehalose and MC) were more effective in preserving rabbit spermatozoa than acetamide alone and that analyzing multiple sperm characteristics, by flow cytometry, can assess sperm damage not detected by analyzing sperm motion characteristics.  相似文献   

2.
Cryopreservation of fetal skin is improved by extracellular trehalose   总被引:7,自引:0,他引:7  
Erdag G  Eroglu A  Morgan J  Toner M 《Cryobiology》2002,44(3):167-228
In this study, we tested a non-permeating cryoprotectant, trehalose, in combination with dimethyl sulfoxide (Me(2)SO) in the cryopreservation of human fetal skin and compared it to Me(2)SO and glycerol, protocols that are routinely used by skin banks. The viability of fetal skin from four groups (fresh, and cryopreserved with glycerol, Me(2)SO, or trehalose/Me(2)SO) were evaluated using an in vitro membrane integrity assay and by transplantation to immunodeficient mice. The membrane integrity assay showed a 90% integrity in fresh, unfrozen fetal skin. The number of intact cells dropped to 23 and 44% in fetal skin cryopreserved with glycerol and Me(2)SO, respectively. When trehalose was added to the cryopreservation medium containing Me(2)SO, the membrane integrity rose to 65%. When transplanted to immunodeficient mice, fetal skin cryopreserved with trehalose/Me(2)SO showed a graft performance indistinguishable from fresh unfrozen fetal skin and strikingly better graft take than that of fetal skin cryopreserved with Me(2)SO or glycerol only. These results suggest that cryopreservation protocols routinely used the skin banks can be improved by combining sugars such as trehalose with a permeating cryoprotectant.  相似文献   

3.
The freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below −30°C in DMSO-treated cells. Similar results were obtained with sorbitol-treated cells, except sorbitol had less effect on the amount of water crystallized at temperatures below −25°C. There was a close association between the per cent unfrozen water at −40°C and per cent cell survival after freezing for 1 hour in liquid nitrogen. It appears that, in periwinkle suspension cultures, the amount of liquid water at −40°C is critical for a successful cryopreservation. The combination of DMSO and sorbitol was the most effective in preventing water from freezing. The results obtained may explain the cryoprotective properties of DMSO and sorbitol and why DMSO and sorbitol in combination are more effective as cryoprotectants than when used alone.  相似文献   

4.
The methods of primary culture and cryopreservation of mouse astrocytes under serum-free conditions were examined. Cerebra from newborn C3H/He mice were employed as the source of astrocytes. The cultured cells were able to grow in a serum-free, chemically defined medium containing transferrin, hydrocortisone, biotin, sodium selenite, insulin, fibroblast growth factor and epidermal growth factor. After the culture was maintained in the medium for 3 weeks, purity was assessed using immunofluorescence staining. The great majority of the cells (>98%) contained glial fibrillary acidic protein and S-100 protein which are cell markers of astrocytes. To cryopreserve the enriched astrocytes under serum-free conditions, various cryoprotectants were examined. The combination of 10% dimethylsulfoxide and 0.1% methylcellulose gave the highest survival rate. These methods of primary culture and cryopreservation will be useful in physiological and biochemical studies which require mouse astrocytes.  相似文献   

5.
Cryopreservation of red blood cells (RBCs) holds great potential benefits for supplying transfusion timely in emergencies. Currently, glycerol is the main cryoprotectant permitted in clinical therapy for RBCs cryopreservation, but its broad application is limited by the toxicity and complex deglycerolization process. Successful cryopreservation of RBCs using more effective materials should be studied to reduce freezing damage, increase biocompatibility, and save processing time. Herein, a simple protocol using natural cryoprotectants combinations of l-proline and trehalose attains a low degree of hemolysis (11.2 ± 2.73%) after thawing compared to glycerol. Furthermore, the morphology of RBCs and the activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase maintain well. Further mechanism study shows that l-proline plays an important role in decreasing the freezing points and inhibiting the growth of ice crystal by permeating into cells during the freezing process. While trehalose works as an inhibitor of ice growth in the freezing process and ice recrystallization in the thawing process. This simple l-proline & trehalose combinations protocol is a promising method to replace current time-consuming and labor-intensive cryopreservation methods of RBCs.  相似文献   

6.
The development of cryopreservation methods for embryonic cells and larvae of sea animals offers a great potential for marine biotechnology. Larval cells of bivalves and sea urchins were frozen to −196 °C using traditional cryoprotectants (Me2SO and trehalose) and the cryoprotective mixture developed by us. In addition to Me2SO and trehalose, this mixture contained an exogenous lipid extract from mussel tissues and antioxidants. A positive effect of antioxidants (α-tocopherol acetate, ascorbic acid or echinochrome, the quinoid pigment of sea urchins) on cell viability became significant only in the presence of exogenous lipids. Antioxidants added to cryoprotective mixtures did not reveal visible cryoprotective activity when used separately. To better understand the mechanism of the protective effect of exogenous lipids on cell membranes of sea animals, a comparative analysis of the fatty acid (FA) composition of total lipids in larval cells before and after freezing was carried out using a gas–liquid chromatography. The results indicate that freezing–thawing has direct effects on the FA composition of major lipid classes in marine invertebrate cells, and these effects can vary depending on the provenance of the cells. We have found that (I) both cell viability and the FA profile of cell lipids after cryopreservation depend on the cryoprotectants used; (II) an amount of saturated, monoenic and polyenic FAs changes significantly after cryopreservation. We assume that the addition of the exogenous lipid extract in form of liposomes could promote a renewal of disturbance areas and prevent from membrane damages during freezing–thawing.  相似文献   

7.
We have developed a simple protocol for the cryopreservation of embryogenic suspension cultures of Cyclamen persicum. Embryogenic suspension cultures in the linear growth phase 7–10 days after subculture were used for cryopreservation. Of the different cryoprotectants tested during a 2-day pre-culture, 0.6 M sucrose resulted in the highest re-growth rates of 75%. An additional pre-treatment with 0.6 M sucrose and 10% DMSO (dimethylsulfoxide) for 1 h also positively affected re-growth. Microscopic studies on viability revealed that only few small embryogenic cells survived cryopreservation, while vacuolated single cells died. Experiments in which the duration of the pre-culture period—i.e. the length of time the embryogenic suspension cells were exposed to 0.6 M sucrose—was varied showed that 2–4 days was the most optimal exposure time to 0.6 M sucrose. Callus re-grown after cryopreservation showed growth rates similar to that of unfrozen callus and regenerated even higher numbers of somatic embryos than unfrozen callus.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - DM Dry mass - DMSO Dimethylsulfoxide - FDA Fluorescein diacetate - FM Fresh mass - 2IP 6-(,-Dimethylallylamino)purine - LN Liquid nitrogen - rpm Rounds per minute - SCV Sedimented cell volume  相似文献   

8.
Methods for the cryopreservation of different stages of Trichinella parasites have been studied. For the cryopreservation of muscle stage larvae (MSL) of T. spiralis s.str. and T. nativa, four cryoprotectants were tested: dimethylsulfoxide, ethanediol, hydroxyethyl starch, and polyvinylpyrrolidone at different concentrations, times, and temperatures of incubation. The cooling rate was approximately 0.6 C min-1. After thawing and an incubation period of 3 hr, a high percentage (80%) of cryopreserved MSL were motile but were not infective for mice. For the cryopreservation of newborn larvae (NBL) of T. spiralis s.str., T. nativa, T. nelsoni, and T. pseudospiralis, 10% dimethylsulfoxide was used as cryoprotectant incubated at 37 C for 15 min. The cooling rate was also 0.6 C min-1. After storage in liquid nitrogen, thawing, and incubation of NBL in culture medium for 3 hr, 80% of NBL were motile. An average of 8% of T. spiralis, 6% T. nativa, and 0.5% T. pseudospiralis developed into MSL in mice. No cryopreserved NBL of T. nelsoni developed into MSL. Compared to unfrozen control groups NBL infectivity was 33% for T. spiralis, 21% for T. nativa, and 2% for T. pseudospiralis.  相似文献   

9.
Summary The present investigation reports optimized parameters for somatic embryogenesis and cryopreservation of embryogenic cultures using shoot apical domes from mature trees of Pinus roxburghii Sarg. Embryogenic tissue of P. roxburghii Sarg. was cryopreserved for 24 h, 10 d, and 8 wk using sorbitol and dimethylsulfoxide (DMSO) as cryoprotectants. Results indicate that 0.2M sorbitol and 5% DMSO had the best cryoprotecting effect. The recovered tissue showed luxuriant growth on maintenance medium (II). Partial desiccation of thawed embryogenic tissue for 24 h prior to transfer to maturation medium enhanced the maturation of somatic embryos. Maturation frequency increased from 1.3 to 18.3% after 12 h desiccation treatment, and from 18.3 to 61.8% after 24 h of desiccation. However, non-desiccated embryogenic tissue produced the least number of somatic embryos (1.3%) on the maturation medium with the same abscisic acid and Gellan gum concentration. All the three embryogenic lines produced plantlets and had the same appearance and normal growth as compared to unfrozen controls.  相似文献   

10.

Purpose

To investigate the differentiation ability of human adipose-derived stem cells (ASCs) towards urothelium-like cells in vitro and the dynamic changes of related cytokines and cytokine receptors in the culture medium.

Materials and Methods

The ASCs were induced using both conditioned media (CM) and the transwell co-culture system with an immortalized urothelium cell line (SV-HUC-1,HUC) for 21 days. Protein and mRNA expression of the mature urothelium specific markers uroplakin-IA (UP-1A) and uroplakin-II (UP-II) were detected by immunofluorescence and quantitative real-time PCR, respectively. Array detection was used to screen 41 cytokines and receptors in the upper medium of urothelium, non-induced ASCs and urothelium-induced ASCs at three time points, early (12 hours), intermediate (7 days) and late (21 days).

Results

After induction for 7 days, the ASCs grown in both CM and transwell co-culture system expressed uroplakin-IA (13.54±2.00%; 17.28±1.84%) and uroplakin-II (19.49±1.73%; 13.98±1.47%). After induction for 21 days, ASCs grown in co-culture had significantly increased expression of uroplakin-IA (48.03±1.25%; 49.57±2.85%) and uroplakin-II (45.38±2.50%; 46.58±1.95%). In the upper medium of urothelium, 28 cytokines and 8 cytokine receptors had significantly higher expression than the counterpart of non-induced ASCs. After 7 days induction, the expression of 22 cytokines and 8 cytokine receptors was significantly elevated in the upper medium of induced ASCs compared to non-induced ASCs. At the early and intermediate time points, ASCs secreted high levels of relative cytokines and soluble receptors, but their expressions decreased significantly at the late time point.

Conclusion

The adipose-derived stem cells have the potential to be differentiated into urothelium-like cells in vitro by both CM and transwell co-culture system with mature urothelium. Numerous cytokines and receptors were involved in the differentiation process with dynamic temporal changes by both paracrine and autocrine signal regulation. Further studies should be carried out to determine the detailed mechanism of cytokines and receptors and to enhance the urothelium differentiation efficiency of ASCs.  相似文献   

11.
Vitrification of endothelial cells (MHECT-5) has not previously been compared with controlled slow freezing methods under standardized conditions. To identify the best cryopreservation technique, we evaluated vitrification and standardized controlled-rate -1°C/minute cell freezing in a -80°C freezer and tested four cryoprotective agents (CPA), namely dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PG), and glycerol (GLY), and two media, namely Dulbecco''s modified Eagle medium Ham’s F-12 (DMEM)and K+-modified TiProtec (K+TiP), which is a high-potassium-containing medium. Numbers of viable cells in proliferation were evaluated by the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Mannheim, Germany). To detect the exact frozen cell number per cryo vial, DNA content was measured by using Hoechst 33258 dye prior to analysis. Thus, results could be evaluated unconstrained by absolute cell number. Thawed cells were cultured in 25 cm2 cell culture flasks to confluence and examined daily by phase contrast imaging. With regard to cell recovery immediately after thawing, DMSO was the most suitable CPA combined with K+TiP in vitrification (99 ±0.5%) and with DMEM in slow freezing (92 ±1.6%). The most viable cells in proliferation after three days of culture were obtained in cells vitrificated by using GLY with K+TiP (308 ±34%) and PG with DMEM in slow freezing (280 ±27%).  相似文献   

12.
We studied the cryopreservation of the most common coccolithophore, Emiliania huxleyi which is considered as one of the main global carbon cycle participants. Both stages of this complex life cycle species were submitted to gradual addition of three distinct cryoprotectants: dimethylsulfoxide (7.5% v/v), methanol (5% v/v) and proline (0.5 M). They were then control-rate cooled (−5 °C min−1) to −50 °C before plunging into liquid nitrogen. Free radical oxygen species have been proposed to occur in cells subjected to pre-freezing manipulation or to cooling. Therefore, catalase (preventing accumulation of hydroxyl radicals) was evaluated for its ability to improve cell viability before and after freezing-thawing challenge. With the exception of proline which induced a decrease in diploid cell proliferation, cryoprotectants had no deleterious effects. On the contrary, growth of the haploid stage was enhanced by each CPA treatment, suggesting mixotrophic growth. Cryopreservation succeeded when dimethylsulfoxide was used, and the late exponential phase was obtained as soon as the 15th post-thawing day. Cell densities were then similar to the unfrozen controls. Catalase had no beneficial effect on the ability of cells to grow, neither prior freezing nor after thawing. In comparison with former attempts to cryopreserve E. huxleyi in other culture collection centers, our protocols allowed faster recovery.  相似文献   

13.
Cryopreservation of embryogenic cultures of Scots pine   总被引:7,自引:2,他引:5  
The aim of the study was to develop an effective cryopreservation method for Scots pine (Pinus sylvestris L.) embryogenic cultures. Altogether nine cell lines derived from three mother trees were cryopreserved after cold hardening using dimethylsulfoxide or two different mixtures of polyethyleneglycol 6000, glucose and dimethylsulfoxide as cryoprotectants. Seventy-eight percent of the cell lines remained viable after cryostorage, the best cryoprotectant treatment being 10% polyethyleneglycol 6000, 10% glucose, and 10% dimethylsulfoxide in water. This treatment resulted in significantly better regrowth of the embryogenic cultures than with the other cryoprotectants or with the controls. According to microscopical observations, the cells that retained their viability and regrowth ability after cryopreservation were the embryonal head cells, as well as some elliptic suspensor cells close to the embryonal head cell area. When proliferation growth of the frozen cultures had started, their morphological appearance was the same as the non-frozen cultures. In addition, the RAPD assays suggested that the cryostorage treatment used here preserved the genetic fidelity of the Scots pine embryogenic cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
A study was conducted to quantify the ability of entrapped, monoxenically produced spores of an arbuscular mycorrhizal fungus to germinate and reproduce the fungal life cycle after cryopreservation. No germination was obtained after incubation of entrapped spores in glycerol and mannitol and subsequent cryopreservation at −70 °C, regardless of the concentration of cryoprotectants and duration of incubation. Incubation for 1 d in 0.5 M sucrose, and for 1 and 2 d in 0.5 M trehalose, led to spore germination after cryopreservation at −70 °C. Lower cryopreservation temperatures were tested with entrapped spores incubated for 1 d in 0.5 M trehalose. The highest germination rate, estimated by the percentage of potentially infective beads (%PIB), was obtained at −100 °C. A %PIB of 95% (water agar medium) to 100% (Strullu–Romand medium) was obtained at this temperature. Thereafter, %PIB rapidly decreased at −140 and −180 °C. Heavy sporulation and high internal root colonization were obtained after re-association of the entrapped spores, incubated for 1 d in 0.5 M trehalose and subsequently cryopreserved at −100 °C, with transformed carrot roots. This demonstrates the ability of entrapped spores to reproduce the fungal life cycle following cold treatment.  相似文献   

16.
Dimethylsulfoxide, the most commonly employed cryoprotectant for cells, has well documented cytotoxic effects in patients. Among the compounds available that may provide protection to cells and tissues during preservation with less cytotoxicity is trehalose. Some animals, such as brine shrimp and tardigrades, accumulate trehalose during periods of extreme environmental stress. In this study, experiments were performed to evaluate the effects of culturing a bovine endothelial cell line (ATCC #CCL-209) in the presence of trehalose prior to preservation by freezing. A number of factors were shown to contribute to cell retention of metabolic activity and proliferative potential including cell culture time with trehalose and the solution conditions during cryopreservation. Using an optimized protocol consisting of 24 h of cell culture with 0.2 M trehalose followed by cryopreservation with 0.2-0.4 M trehalose in sodium bicarbonate buffered Eagles minimum essential medium at pH 7.4 resulted in 87±4% post-preservation cell metabolic activity expressed as relative fluorescence based upon reduction of resazurin to resorufin. This new method provides an alternative preservation strategy to the more classical preservation methods employing dimethylsulfoxide available for cells and tissues.  相似文献   

17.
Freeze-drying sperm is an alternative to cryopreservation. Although sperm from various species has been freeze-dried, there are few reports for bovine sperm. The primary objective of this study was to evaluate the protective effect of various freeze-drying media on the structural and functional components of bovine sperm. The media tested were composed of TCM 199 with Hanks salts supplemented with 10% fetal calf serum (FCS) and TCM 199 with Hanks salts supplemented with 10% FCS and 0.2 M trehalose and EGTA solution. The efficiency of each medium on the preservation of freeze-dried sperm structures was evaluated with conventional and electron microscopy, DNA integrity was analyzed by a TUNEL assay, and fertilizing ability of lyophilized sperm was determined with ICSI. Although the plasma membrane was damaged in all media tested, mitochondria were similarly preserved in all freeze-drying treatments. The acrosome was best preserved in the media that contained trehalose (other treatments also conserved this structure). In contrast, media containing EGTA or trehalose most effectively preserved the nuclei in freeze-dried sperm, with only 2 and 5%, respectively, of cells with fragmented DNA. Furthermore, sperm conserved with these media also had higher (P<0.05) rates of sperm head decondensation (32.5 and 27.5%), pronucleus formation (37.5 and 45.0%) and blastocyst formation (19.4 and 18.3%) than medium supplemented with FCS (15.0, 20.0 and 10.2%, respectively). In conclusion, media with EGTA and trehalose adequately protected bovine sperm during freeze-drying by preserving the viability of their nuclei.  相似文献   

18.
The development of cryopreservation methods for microalgae opens great prospects for marine biotechnology and aims to establish a bank of cryopreserved cultures. Eight of ten marine microalgae species used in this study (the diatoms, green, red, and golden algae), including five previously untested species, were successfully recovered after freezing to ultra-low temperatures (?196 °C) using penetrating (dimethyl sulfoxide, glycerol, and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants. We found that ethylene glycol in combination with trehalose possessed the most effective cryoprotective activity among the algae cryoprotectants tested. However, the chief factor for the successful preservation of microalgal cells during freeze–thawing was shown to be the cooling rate. Cooling was performed in two ways: step or fast droplet freezing. The droplet freezing described here was effective only for cryopreserving green algae, whereas step freezing was optimal for all other algal species. Three diatoms of the genus Attheya were successfully cryopreserved for the first time, but none of the tested protocols had a positive result for the diatoms belonging to Pseudo-nitzschia. The failure may be explained rather by peculiarities in the cell wall composition (higher content of silica and fewer organic components) than by the specific (long and thin) shape of these cells. The pigment content in all of the studied species tended to decrease after thawing as compared with unfrozen cells and increase significantly during cell recovery. Cryosensitivity of marine algae depended on the differences in natural intrinsic characteristics rather than their taxonomic position.  相似文献   

19.
Alternative substrates for cryopreservation at −20 °C have been little explored for basidiomycetes and could bring new possibilities of lower cost cryopreservation. Nevertheless, freezing temperatures between −15 and −60 °C are very challenging because they frequently result in cryoinjuries. The objective of this study was to evaluate substrates associated to cryoprotective agents for Pleurotus ostreatus cryopreservation at −20 or −70 °C in order to develop alternative techniques for basidiomycete cryopreservation. P. ostreatus was grown on potato dextrose agar or whole grains of oat, wheat, rice or millet and transferred to cryovials with cryoprotective solution with 1 % dimethyl sulfoxide, 5 % glycerol, 10 % saccharose, 4 % glucose, 6 % polyethylene glycol-6000 or 5 % malt extract. The mycelium in the cryovials were cryopreserved at −20 or −70 °C and recovered for evaluation of the mycelial growth viability after 1 and 3 years. Both substrates and cryoprotectants affect the viability of the mycelial growth cryopreserved at −20 or −70 °C; wheat grains combined with cryoprotectants such as saccharose or glucose are effective for keeping mycelium viable after cryopreservation at −20 °C for 1 or 3 years; for cryopreservation at −70 °C after 1 or 3 years, any substrate combined with any cryoprotectant is effective for preserving the mycelium viable, except for millet grains with polyethylene glycol after 3 years; semi-permeable cryoprotective agents such as saccharose and glucose are the most effective for cryopreservation at −20 or −70 °C for at least 3 years.  相似文献   

20.
Factors affecting the survival of mouse embryos cryopreserved by vitrification   总被引:16,自引:1,他引:16  
W F Rall 《Cryobiology》1987,24(5):387-402
Preimplantation stage mouse embryos have been used to examine the response of a simple multicellular system to cryopreservation by the complete vitrification of the suspension. Successful vitrification requires the use of a solution of cryoprotectants that is sufficiently concentrated to supercool and solidify into a glass at practicable cooling rates. Factors that influence the survival of embryos include the concentration and composition of the vitrification solution, the procedure used to equilibrate embryos in this solution, the cooling and warming conditions, and the procedure used to dilute embryos from the vitrification solution. High rates of survival are obtained when embryos are dehydrated prior to vitrification in solutions composed of saline plus multimolar concentrations of either mixtures of permeating cryoprotectants (e.g. dimethyl sulphoxide-acetamide-propylene glycol) or single permeating cryoprotectants (propylene glycol or glycerol). Full permeation of cryoprotectants into the cells is not necessary and may lead to chemical toxicity and osmotic injury. Partial permeation and osmotic shrinkage concentrates the endogenous cytoplasmic macromolecules and greatly increases the likelihood of intracellular vitrification. Vitrification is a practical approach for embryo cryopreservation and offers new opportunities to examine fundamental aspects of cryoprotection and cryoinjury in the absence of freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号