首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gray mouse lemurs (Microcebus murinus) from Madagascar present an excellent model for studies of torpor regulation in a primate species. In the present study, we analyzed the response of the insulin si...  相似文献   

2.
Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser(235/236) in vitro and in vivo using an mTOR-independent mechanism. Mutation of rpS6 at Ser(235/236) reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.  相似文献   

3.
AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were assessed. Insulin increased Akt Ser473 phosphorylation (P < 0.01), irrespective of genotype or presence of AICAR. AICAR increased phosphorylation of AMPK Thr172 (P < 0.01) in WT but not KO mice. Insulin stimulation increased phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46) (P < 0.01) in WT, AMPK alpha2 KO, and AMPK gamma3 KO mice. However, in WT mice, preincubation with AICAR completely inhibited insulin-induced phosphorylation of mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46). In conclusion, functional alpha2 and gamma3 AMPK subunits are required for AICAR-induced inhibitory effects on mTOR signaling.  相似文献   

4.
Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca2+ signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca2+ was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca2+] and environmental temperatures. Therefore, Ca2+ signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.  相似文献   

5.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60-65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S(0.5) values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S(0.5) ATP increased by 330%. Assay at 10 degrees C also elevated S(0.5) ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   

6.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

7.
8.
Moderate calorie restriction (CR) (~60% of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IR(Tyr1162/1163), IGF-1R(Tyr1135/1136), IRS-1(Ser312), PTEN(Ser380), Akt(Ser473), GSK3α(Ser21), GSK3β(Ser9)) and mTOR (TSC2(Ser939), mTOR(Ser2448), P70S6K(Thr412), RPS6(Ser235/236)) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.  相似文献   

9.
Phosphorylation of Ribosomal Protein S6 (RPS6) was the first post-translational modification of the ribosome to be identified and is a commonly-used readout for mTORC1 activity. Although the cellular and organismal functions of RPS6 phosphorylation are known, the molecular consequences of RPS6 phosphorylation on translation are less well understood. Here we use selective ribosome footprinting to analyze the location of ribosomes containing phosphorylated RPS6 on endogenous mRNAs in cells. We find that RPS6 becomes progressively dephosphorylated on ribosomes as they translate an mRNA. As a consequence, average RPS6 phosphorylation is higher on mRNAs with short coding sequences (CDSs) compared to mRNAs with long CDSs. We test whether RPS6 phosphorylation differentially affects mRNA translation based on CDS length by genetic removal of RPS6 phosphorylation. We find that RPS6 phosphorylation promotes translation of mRNAs with short CDSs more strongly than mRNAs with long CDSs. Interestingly, RPS6 phosphorylation does not promote translation of mRNAs with 5′ TOP motifs despite their short CDS lengths, suggesting they are translated via a different mode. In sum this provides a dynamic view of RPS6 phosphorylation on ribosomes as they translate mRNAs and the functional consequence on translation.  相似文献   

10.
Recent data have suggested that insulin resistance may be associated with a diminished ability of skeletal muscle to undergo hypertrophy (Paturi S, Gutta AK, Kakarla SK, Katta A, Arnold EC, Wu M, Rice KM, Blough ER. J Appl Physiol 108: 7-13, 2010). Here we examine the effects of insulin resistance using the obese Zucker (OZ) rat with increased muscle loading on the regulation of the mammalian target of rapamycin (mTOR) and its downstream signaling intermediates 70-kDa ribosomal protein S6 kinase (p70S6k), ribosomal protein S6 (rpS6), eukaryotic elongation factor 2 (eEF2), and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Compared with that observed in lean Zucker (LZ) rats, the degree of soleus muscle hypertrophy as assessed by changes in muscle wet weight (LZ: 35% vs. OZ: 16%) was significantly less in the OZ rats after 3 wk of muscle overload (P < 0.05). This diminished growth in the OZ rats was accompanied by significant impairments in the ability of the soleus to undergo phosphorylation of mTOR (Ser(2448)), p70S6k (Thr(389)), rpS6 (Ser(235/236)), and protein kinase B (Akt) (Ser(473) and Thr(308)) (P < 0.05). Taken together, these data suggest that impaired overload-induced hypertrophy in insulin-resistant skeletal muscle may be related to decreases in the ability of the muscle to undergo mTOR-related signaling.  相似文献   

11.
The branched-chain amino acid leucine stimulates muscle protein synthesis in part by directly activating the mTOR signaling pathway. Furthermore, leucine, if given in conjunction with resistance exercise, enhances the exercise-induced mTOR signaling and protein synthesis. Here we tested whether leucine can activate the mTOR anabolic signaling pathway in uremia and whether it can enhance work overload (WO)-induced signaling through this pathway. Chronic kidney disease (CKD) and control rats were studied after 7 days of surgically induced unilateral plantaris muscle WO and a single leucine or saline load. In the basal state, 4E-BP1 phosphorylation was modestly depressed in non-WO muscle of CKD rats, whereas rpS6 phosphorylation was nearly completely suppressed. After oral leucine mTOR, S6K1 and rpS6 phosphorylation increased similarly in both groups, whereas the phospho-4E-BP1 response was modestly attenuated in CKD. WO alone activated the mTOR signaling pathway in control and CKD rats. In WO CKD, muscle leucine augmented mTOR and 4E-BP1 phosphorylation, but its effect on S6K1 phosphorylation was attenuated. Taken together, this study has established that the chronic uremic state impairs basal signaling through the mTOR anabolic pathway, an abnormality that may contribute to muscle wasting. However, despite this abnormality, leucine can stimulate this signaling pathway in CKD, although its effectiveness is partially attenuated, including in skeletal muscle undergoing sustained WO. Thus, although there is some resistance to leucine in CKD, the data suggest a potential role for leucine-rich supplements in the management of uremic muscle wasting.  相似文献   

12.
The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.  相似文献   

13.
Cellular and organismal homeostasis must be maintained across a body temperature (Tb) range of 0 to 37 degrees C during mammalian hibernation. Hibernators depress biosynthetic activities including protein synthesis, concordant with limited energy availability and temperature effects on reaction rates. We used polysome analysis to show that initiation of protein synthesis ceases during entrance into torpor in golden-mantled ground squirrels (Spermophilus lateralis) when Tb reaches 18 degrees C. Elongation of preinitiated polypeptides continues slowly throughout the torpor bout. As Tb begins to rise, initiation resumes even at temperatures below 18 degrees C, although the euthermic polysome pattern is not reestablished. At precisely 18 degrees C, there is a large increase in initiation events and a complete restoration of euthermic polysome distribution patterns. These data indicate a role for both passive and active depression of translation during torpor and are consistent with a requirement for new protein biosynthesis during each interbout arousal.  相似文献   

14.
Low-intensity resistance exercise training combined with blood flow restriction (REFR) increases muscle size and strength as much as conventional resistance exercise with high loads. However, the cellular mechanism(s) underlying the hypertrophy and strength gains induced by REFR are unknown. We have recently shown that both the mammalian target of rapamycin (mTOR) signaling pathway and muscle protein synthesis (MPS) were stimulated after an acute bout of high-intensity resistance exercise in humans. Therefore, we hypothesized that an acute bout of REFR would enhance mTOR signaling and stimulate MPS. We measured MPS and phosphorylation status of mTOR-associated signaling proteins in six young male subjects. Subjects were studied once during blood flow restriction (REFR, bilateral leg extension exercise at 20% of 1 repetition maximum while a pressure cuff was placed on the proximal end of both thighs and inflated at 200 mmHg) and a second time using the same exercise protocol but without the pressure cuff [control (Ctrl)]. MPS in the vastus lateralis muscle was measured by using stable isotope techniques, and the phosphorylation status of signaling proteins was determined by immunoblotting. Blood lactate, cortisol, and growth hormone were higher following REFR compared with Ctrl (P < 0.05). Ribosomal S6 kinase 1 (S6K1) phosphorylation, a downstream target of mTOR, increased concurrently with a decreased eukaryotic translation elongation factor 2 (eEF2) phosphorylation and a 46% increase in MPS following REFR (P < 0.05). MPS and S6K1 phosphorylation were unchanged in the Ctrl group postexercise. We conclude that the activation of the mTOR signaling pathway appears to be an important cellular mechanism that may help explain the enhanced muscle protein synthesis during REFR.  相似文献   

15.
16.
Many species of hibernating mammals rely on hoarded food rather than body fat to support winter energy requirements. Here, we evaluate whether the associated ingestive and digestive requirements reduce the benefits that food-storing hibernators can accrue from torpor. Using a simple model, we predict (1) that digestive efficiency could either increase or decrease with increased use of torpor, depending on the Q(10) of digestion relative to the Q(10) of whole-animal metabolism and (2) that increased torpor will result in a linear decrease in energy consumption but an exponential increase in euthermic intake requirements. In 16 captive eastern chipmunks (Tamias striatus), the proportion of time that different individuals spent in torpor was highly variable (29.8%+/-5.9%; 0.0%-86.3%), positively correlated with dry matter digestibility (r2=0.53, P=0.02) and negatively correlated with energy consumption (r2=0.72, P=0.002). Thus, by both increasing conversion efficiency and reducing energy requirements, torpor appears to provide a double benefit for energy conservation by food-storing hibernators. Despite this, a comparative analysis shows that the euthermic intervals of food-storing rodents are four times as long and torpor intervals are half as long as that of fat-storing rodents. Given that required euthermic intake rates are expected to increase exponentially at high levels of torpor, the reduced torpor expression of food-storing species may result from constraints on their ability to load enough food into the gut when euthermic to cover the energy requirements of the subsequent torpor cycle.  相似文献   

17.
The optimal cellular responses to DNA damage are modulated by kinase and phosphatase. The ataxia telangiectasia mutated (ATM) is a Ser/Thr kinase which is the core of the DNA damage signaling apparatus. The Ser/Thr protein phosphatase type 1 (PP1) inhibitor, tautomycetin (TC) and an antibody to the phospho-(S/T)Q sites of the ATM substrate were used to identify the common substrates for PP1 and ATM in regulating the pathway for DNA damage response. Ribosomal protein S6 (RPS6) was first identified as a substrate for PP1 and ATM. The phosphorylation at Ser247 of RPS6 was then significantly decreased by PP1-mediated dephosphorylation immediately after UV irradiation. These results suggest that PP1 specifically dephosphorylated RPS6 at phospho-Ser247 in vivo. In response to DNA damage, ATM activity was finally required for the phosphorylation of RPS6 at Ser247. We propose from these results a novel mechanism for modulating the RPS6 function by PP1 and ATM which regulates cell growth and survival in response to DNA-damage stimuli.  相似文献   

18.
Higher eukaryotic ribosome biogenesis takes place in the nucleolus and requires the import of ribosomal proteins from the cytoplasm. The ribosomal protein S6 is essential for the formation of ribosome subunits, and in mice S6 heterozygosity triggers embryonal lethality. Downstream of the mTOR (mammalian target of rapamycin) and MAPK (mitogen-activated protein kinase) signalling pathways S6 protein is phosphorylated at clustered residues S235/236 and S240/244 upon numerous physiological and pathological stimuli. Here, we show that S240/244-phosphorylated S6 is predominantly nuclear but also detectable in the cytoplasm, whereas S235/236-phosphorylated S6 is almost exclusively localized to the nucleus of primary human cells and virtually undetectable in the cytoplasm. However, in transformed cells the latter can also be detected in the cytoplasm. Experiments with the mTOR inhibitor rapamycin revealed that neither blocking the phosphorylation of S6 at S235/236 and S240/244 nor arresting the cell cycle affects the cytoplasmic/nuclear localization of S6 protein. Our findings provide new insights into the regulation of S6 phosphorylation and S6 protein localization in mammalian cells.  相似文献   

19.
Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.  相似文献   

20.
The optimal cellular responses to DNA damage are modulated by kinase and phosphatase. The ataxia telangiectasia mutated (ATM) is a Ser/Thr kinase which is the core of the DNA damage signaling apparatus. The Ser/Thr protein phosphatase type 1 (PP1) inhibitor, tautomycetin (TC) and an antibody to the phospho-(S/T)Q sites of the ATM substrate were used to identify the common substrates for PP1 and ATM in regulating the pathway for DNA damage response. Ribosomal protein S6 (RPS6) was first identified as a substrate for PP1 and ATM. The phosphorylation at Ser247 of RPS6 was then significantly decreased by PP1-mediated dephosphorylation immediately after UV irradiation. These results suggest that PP1 specifically dephosphorylated RPS6 at phospho-Ser247 in vivo. In response to DNA damage, ATM activity was finally required for the phosphorylation of RPS6 at Ser247. We propose from these results a novel mechanism for modulating the RPS6 function by PP1 and ATM which regulates cell growth and survival in response to DNA-damage stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号