首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study used naturally occurring carbon and nitrogen stable isotopes of teeth to study the diets of marine mammals. The isotopic ratios of nonchemically preserved teeth from eight species of marine mammals, representing 87 individuals that spanned the trophic continuum, were found to reflect nutritional sources. The δ13C signals distinguished animals that lived in waters dominated by different primary producers (e. g., seagrass, kelp, and phytoplankton), and δ15N values indicated the diet and trophic level of the species. This research suggests that isotopic signatures of teeth can be used in dietary studies to show differences and similarities among age classes, genders, geographic locations, and time periods.  相似文献   

3.
According to the refugee species concept, increasing replacement of open steppe by forest cover after the last glacial period and human pressure had together forced European bison (Bison bonasus)—the largest extant terrestrial mammal of Europe—into forests as a refuge habitat. The consequent decreased fitness and population density led to the gradual extinction of the species. Understanding the pre-refugee ecology of the species may help its conservation management and ensure its long time survival. In view of this, we investigated the abundance of stable isotopes (δ13C and δ15N) in radiocarbon dated skeletal remains of European bison and other large herbivores—aurochs (Bos primigenius), moose (Alces alces), and reindeer (Rangifer tarandus)—from the Early Holocene of northern Europe to reconstruct their dietary habits and pattern of habitat use in conditions of low human influence. Carbon and nitrogen isotopic compositions in collagen of the ungulate species in northern central Europe during the Early Holocene showed significant differences in the habitat use and the diet of these herbivores. The values of the δ13C and δ15N isotopes reflected the use of open habitats by bison, with their diet intermediate between that of aurochs (grazer) and of moose (browser). Our results show that, despite the partial overlap in carbon and nitrogen isotopic values of some species, Early Holocene large ungulates avoided competition by selection of different habitats or different food sources within similar environments. Although Early Holocene bison and Late Pleistocene steppe bison utilized open habitats, their diets were significantly different, as reflected by their δ15N values. Additional isotopic analyses show that modern populations of European bison utilize much more forested habitats than Early Holocene bison, which supports the refugee status of the species.  相似文献   

4.
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.  相似文献   

5.
Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances.Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.  相似文献   

6.
Stable carbon isotope analysis in tooth enamel is a well-established approach to infer C3 and C4 dietary composition in fossil mammals. The bulk of past work has been conducted on large herbivorous mammals. One important finding is that their dietary habits of fossil large mammals track the late Miocene ecological shift from C3 forest and woodland to C4 savannah. However, few studies on carbon isotopes of fossil small mammals exist due to limitations imposed by the size of rodent teeth, and the isotopic ecological and dietary behaviors of small mammals to climate change remain unknown. Here we evaluate the impact of ecological change on small mammals by fine-scale comparisons of carbon isotope ratios (δ13C) with dental morphology of murine rodents, spanning 13.8 to ∼2.0 Ma, across the C3 to C4 vegetation shift in the Miocene Siwalik sequence of Pakistan. We applied in-situ laser ablation GC-IRMS to lower first molars and measured two grazing indices on upper first molars. Murine rodents yield a distinct, but related, record of past ecological conditions from large herbivorous mammals, reflecting available foods in their much smaller home ranges. In general, larger murine species show more positive δ13C values and have higher grazing indices than smaller species inhabiting the same area at any given age. Two clades of murine rodents experienced different rates of morphological change. In the faster-evolving clade, the timing and trend of morphological innovations are closely tied to consumption of C4 diet during the vegetation shift. This study provides quantitative evidence of linkages among diet, niche partitioning, and dental morphology at a more detailed level than previously possible.  相似文献   

7.
While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis.  相似文献   

8.
Stable isotopes derived from the claws of birds could be used to determine the migratory origins of birds if the time periods represented in excised sections of claws were known. We investigated new keratin growth in the claws of adult female Lesser Scaup (Aythya affinis) by estimating the equilibration rates of stable isotopes (δ 13C, δ 15N, and δ 2H) from the breeding grounds into 1 mm claw tips. We sampled birds on their breeding ground through time and found that it took approximately 3–3.5 months for isotope values in most claw tips to equilibrate to isotope values that reflected those present in the environment on their breeding grounds. Results from this study suggest that isotopes equilibrate slowly into claw tips of Lesser Scaup, suggesting isotopes could potentially be used to determine the wintering grounds of birds. We suggest using controlled feeding experiments or longitudinal field investigations to understand claw growth and isotopic equilibration in claw tips. Such information would be valuable in ascertaining whether claw tips can be used in future studies to identify the migratory origins of birds.  相似文献   

9.
Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ2H and δ18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water.  相似文献   

10.
This study tests the hypothesis that vertical habitat preferences of different monkey species inhabiting closed canopy rainforest are reflected in oxygen isotopes. We sampled bone from seven sympatric cercopithecid species in the Taï forest, Côte d''Ivoire, where long-term study has established taxon-specific patterns of habitat use and diet. Modern rib samples (n = 34) were examined for oxygen (δ18Oap) and carbon (δ13Cap) from bone apatite (‘bioapatite’), and carbon (δ13Cco) and nitrogen (δ15Nco) from bone collagen. Results are consistent for C3 feeders in a closed canopy habitat. Low irradiance and evapotranspiration, coupled with high relative humidity and recycled CO2 in forest understory, contribute to observed isotopic variability. Both δ13Cco and δ13Cap results reflect diet; however, δ13C values are not correlated with species preference for canopy height. By contrast, δ18Oap results are correlated with mean observed height and show significant vertical partitioning between taxa feeding at ground, lower and upper canopy levels. This oxygen isotope canopy effect has important palaeobiological implications for reconstructing vertical partitioning among sympatric primates and other species in tropical forests.  相似文献   

11.
Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure.  相似文献   

12.
13.
Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.  相似文献   

14.
  1. Stable isotopes analysis (SIA) of carbon and nitrogen provides valuable information about trophic interactions and animal feeding habits.
  2. We used near‐infrared reflectance spectroscopy (NIRS) and support vector machines (SVM) to develop a model for screening isotopic ratios of carbon and nitrogen (δ 13C and δ 15N) in samples from living animals. We applied this method on dried blood samples from birds previously analyzed for δ 13C and δ 15N to test whether NIRS can be applied to accurately estimate isotopic ratios.
  3. Our results show a prediction accuracy of NIRS (R 2 > 0.65, RMSEP < 0.28) for both δ 13C and δ 15N, representing a 12% of the measurement range in this study.
  4. Our study suggests that NIRS can provide a time‐ and cost‐efficient method to evaluate stable isotope ratios of carbon and nitrogen when substantial differences in δ 13C or δ 15N are expected, such as when discriminating among different trophic levels in diet.
  相似文献   

15.
Stable carbon, nitrogen, hydrogen and oxygen isotopes have been used to infer aspects of species ecology and environment in both modern ecosystems and the fossil record. Compared to large mammals, stable isotopic studies of small‐mammal ecology are limited; however, high species and ecological diversity within small mammals presents several advantages for quantifying resource use and organism–environment interactions using stable isotopes over various spatial and temporal scales. We analyzed the isotopic composition of hair from two heteromyid rodent species, Dipodomys ordii and Perognathus parvus, from localities across western North America in order to characterize dietary variation in relation to vegetation and climatic gradients. Significant correlations between the carbon isotopic composition (δ13C) of these species and several climatic variables imply that seasonal temperature and precipitation control the composition and distribution of dietary resources (grass seeds). Our results also suggest a moisture influence on the nitrogen isotopic composition (δ15N) of heteromyid diets. Population‐ and species‐level variation in δ13C and δ15N values record fine‐scale habitat heterogeneity and significant differences in resource use between species. Using classification and regression‐tree techniques, we modeled the geographic variation in heteromyid δ13Cdiet values based on 10 climatic variables and generated an isotope landscape model (‘isoscape’). The isoscape predictions for δ13Cdiet differ from expectations based on observed C4 distributions and instead indicate that D. ordii and P. parvus record seasonally abundant grass resources, with additional model deviations potentially attributed to geographic variation in dietary selection. The oxygen and hydrogen isotopic composition of D. ordii is enriched relative to local meteoric water and suggests that individuals rely on highly evaporated water sources, such as seed moisture. Based on the climatic influences on vegetation and diet documented in this study, the isotopic composition of small mammals has high potential for recording ecological responses to environmental changes over short and long time scales.  相似文献   

16.
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ 15N and 1.8 and 1.2‰ for δ 13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ 15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.  相似文献   

17.
Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C) or nitrogen (δ15N) isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0‰ lower in closed than in open habitats, while δ15N were 2.0‰ and 7.4‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.  相似文献   

18.
The nutritional state of animals is tightly linked to the ambient environment, and for northern ungulates the state strongly influences vital population demographics, such as pregnancy rates. Continuously growing tissues, such as hair, can be viewed as dietary records of animals over longer temporal scales. Using sequential data on nitrogen stable isotopes (δ15N) in muskox guard hairs from ten individuals in high arctic Northeast Greenland, we were able to reconstruct the dietary history of muskoxen over approximately 2.5 years with a high temporal resolution of app. 9 days. The dietary chronology included almost three full summer and winter periods. The diet showed strong intra- and inter-annual seasonality, and was significantly linked to changes in local environmental conditions (temperature and snow depth). The summer diets were highly similar across years, reflecting a graminoid-dominated diet. In contrast, winter diets were markedly different between years, a pattern apparently linked to snow conditions. Snow-rich winters had markedly higher δ15N values than snow-poor winters, indicating that muskoxen had limited access to forage, and relied more heavily on their body stores. Due to the close link between body stores and calf production in northern ungulates, the dietary winter signals could eventually serve as an indicator of calf production the following spring. Our study opens the field for further studies and longer chronologies to test such links. The method of sequential stable isotope analysis of guard hairs thus constitutes a promising candidate for population-level monitoring of animals in remote, arctic areas.  相似文献   

19.
  1. Dietary studies in birds of prey involve direct observation and examination of food remains at resting and nesting sites. Although these methods accurately identify diet in raptors, they are time‐consuming, resource‐intensive, and associated with biases from the feeding ecology of raptors like Gyps vultures. Our study set out to estimate diet composition in Gyps vultures informed by stable isotopes that provide a good representation of assimilated diet from local systems.
  2. We hypothesized that differences in Gyps vulture diet composition is a function of sampling location and that these vultures move between Serengeti National Park and Selous Game Reserve to forage. We also theorized that grazing ungulates are the principal items in Gyps vulture diet.
  3. Through combined linear and Bayesian modeling, diet derived from δ13C in Gyps vultures consisted of grazing herbivores across sites, with those in Serengeti National Park consuming higher proportions of grazing herbivores (>87%). δ13C differences in vulture feather subsets did not indicate shifts in vulture diet and combined with blood δ13C, vultures fed largely on grazers for ~159 days before they were sampled. Similarly, δ15N values indicated Gyps vultures fed largely on herbivores. δ34S ratios separated where vultures fed when the two sites were compared. δ34S variation in vultures across sites resulted from baseline differences in plant δ34S values, though it is not possible to match δ34S to specific locations.
  4. Our findings highlight the relevance of repeated sampling that considers tissues with varying isotopic turnover and emerging Bayesian techniques for dietary studies using stable isotopes. Findings also suggested limited vulture movement between the two local systems. However, more sampling coupled with environmental data is required to fully comprehend this observation and its implications to Gyps vulture ecology and conservation.
  相似文献   

20.
The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10 mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlying microzooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages.These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton—zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号