首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.  相似文献   

2.
3.
Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid–liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.  相似文献   

4.
Shedding light on health and disease using molecular beacons.   总被引:2,自引:0,他引:2  
The detection and identification of pathogens is often painstaking due to the low abundance of diseased cells in clinical samples. The genomic sequences of the pathogen can be amplified through methods such as the polymerase chain reaction and nucleic acid sequence-based amplification, but the nucleic acid targets are often lost among other unintended products of amplification. Novel nucleic acid probes known as molecular beacons have been developed allowing for the rapid and specific detection of genetic markers of a disease. Molecular beacons are hairpin-forming oligonucleotides labelled at one end with a quencher and at the other end with a fluorescent reporter dye. In the absence of target, the fluorescence is quenched. In the presence of target, the hairpin structure opens upon beacon/target hybridisation, resulting in the restoration of fluorescence. The ability to transduce target recognition into a fluorescence signal with high signal-to-background ratio, coupled with an improved specificity, has allowed molecular beacons to enjoy a wide range of biological and biomedical applications. Here, we describe the basic features of molecular beacons, review their applications in disease detection and diagnosis and discuss some of the issues and challenges of in vivo studies. The aim of this paper is to foster the development of new molecular beacon-based assays and to stimulate the application of this technology in laboratory and clinical studies of health and disease.  相似文献   

5.
Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both therapeutic and toxic effects. Experimental membrane models have been used to perform in vitro assessment of the effects of drugs on the biophysical properties of membranes by employing different experimental techniques. In in silico studies, molecular dynamics simulations have been used to provide new insights at an atomistic level, which enables the study of properties that are difficult or even impossible to measure experimentally. Each model and technique has its advantages and disadvantages. Hence, combining different models and techniques is necessary for a more reliable study. In this review, the theoretical backgrounds of these (in vitro and in silico) approaches are presented, followed by a discussion of the pharmacokinetic and pharmacodynamic properties of drugs that are related to their interactions with membranes. All approaches are discussed in parallel to present for a better connection between experimental and simulation studies. Finally, an overview of the molecular dynamics simulation studies used for drug-membrane interactions is provided.  相似文献   

6.

In this paper the results of research at 5–10 and 24 years after the Chernobyl accident are summarized. These results include the investigation of genomic instability, formation of the adaptive response, genome damage, and oxidative status. The studies were performed on cells in culture, mice, children and adults who lived in the contaminated areas, and liquidators of the consequences of the Chernobyl accident. Inhibition of cell proliferative activity, late cell death, and the increase in micronucleus and giant cell frequency were observed after the exposure of cells in culture in the accident zone followed by their culturing in laboratory conditions. In the progeny of the exposed cells, the effect of enhanced radiosensitivity was detected. Thus, it can be assumed that exposure of parental cells in culture in the area of the accident induced genomic instability that resulted in the development of various abnormalities in progeny cells. At the organism level, the Chernobyl zone exposure of mice caused an increase in radiosensitivity; as well, a decrease in the endotheliocyte density in the cerebral cortex and other brain tissues was observed. In the blood lymphocytes of children stimulated by PHA, a more than two times increase in micronucleus cell frequency was detected. A reduced number of individuals with significant adaptive response was found in both the juvenile and adult groups. In all investigated populations, an increased number of individuals with enhanced radiosensitivity were observed in response to low-dose radiation exposure. At 24 years after the accident liquidators were subjected to examinations, which revealed an increased frequency of cells with micronuclei and chromosome-type aberrations in blood lymphocytes, an elevated level of DNA double strand breaks, and a reduced level of reactive oxygen species compared to those of the control group. This means that the genomic instability that was accumulated by the residents of the contaminated regions and liquidators as a result of the accident leads to damage of the genetic apparatus, an increase in radiosensitivity, and hypoxia as late consequences that all are risk factors and increase the probability of the development of tumor and non-tumor diseases. The development of the above-mentioned pathological processes may occur in the distant future.

  相似文献   

7.
Heterologous expression of Vitreoscilla hemoglobin (VHb) has been reported to improve cell growth, protein synthesis, metabolite productivity and nitric oxide detoxification. Although it has been proposed that such phenomenon is attributed to the enhancement of respiration and energy metabolism by facilitating oxygen delivery, the mechanism of VHb action remains to be elucidated. In the present study, changes of protein expression profile in Escherichia coli as a consequence of VHb production was investigated by two-dimensional gel electrophoresis (2-DE) in conjunction with peptide mass fingerprinting. Total protein extracts derived from cells expressing native green fluorescent protein (GFPuv) and chimeric VHbGFPuv grown in Luria-Bertani broth were prepared by sonic disintegration. One hundred microgram of proteins was individually electrophoresed in IEF-agarose rod gels followed by gradient SDS-PAGE gels. Protein spots were excised from the gels, digested to peptide fragments by trypsin, and analyzed using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Results revealed that expression of VHbGFPuv caused an entire disappearance of tryptophanase as well as down-regulated proteins involved in various metabolic pathways, e.g. glycerol kinase, isocitrate dehydrogenase, aldehyde dehydrogenase, and D-glucose-D-galactose binding protein. Phenotypic assay of cellular indole production confirmed the differentially expressed tryptophanase enzymes in which cells expressing chimeric VHbGFP demonstrated a complete indole-negative reaction. Supplementation of delta-aminolevulinic acid (ALA) to the culture medium enhanced expression of glyceraldehyde-3-phosphate dehydrogenase and glycerol kinase. Our findings herein shed light on the functional roles of VHb on cellular carbon and nitrogen consumptions as well as regulation of other metabolic pathway intermediates, possibly by autoregulation of the catabolite repressor regulons.  相似文献   

8.
The distinctive lateral organization of the protein complexes in the thylakoid membrane investigated by Jan Anderson and co-workers is dependent on the balance of various attractive and repulsive forces. Modulation of these forces allows critical physiological regulation of photosynthesis that provides efficient light-harvesting in limiting light but dissipation of excess potentially damaging radiation in saturating light. The light-harvesting complexes (LHCII) are central to this regulation, which is achieved by phosphorylation of stromal residues, protonation on the lumen surface and de-epoxidation of bound violaxanthin. The functional flexibility of LHCII derives from a remarkable pigment composition and configuration that not only allow efficient absorption of light and efficient energy transfer either to photosystem II or photosystem I core complexes, but through subtle configurational changes can also exhibit highly efficient dissipative reactions involving chlorophyll–xanthophyll and/or chlorophyll–chlorophyll interactions. These changes in function are determined at a macroscopic level by alterations in protein–protein interactions in the thylakoid membrane. The capacity and dynamics of this regulation are tuned to different physiological scenarios by the exact protein and pigment content of the light-harvesting system. Here, the molecular mechanisms involved will be reviewed, and the optimization of the light-harvesting system in different environmental conditions described.  相似文献   

9.
The epithelial cell adhesion molecule (EpCAM) is a Type I transmembrane superficial glycoprotein antigen that is expressed on the surface of basolateral membrane of multiple epithelial cells with some exceptions such as epidermal keratinocytes, hepatocytes, thymic cortical epithelial cells, squamous stratified epithelial cells, and myoepithelial cells that do not express the molecule. The molecule plays a pivotal role in the structural integrity, adhesion of the epithelial tissues and their interaction with the underlying layers. EpCAM prevents claudin-7 and claudin-1 molecules from degradation, thereby, decreasing the number of tight junctions and cellular interconnections, and promoting the cells toward carcinogenic transformation. Moreover, the mutations in the EpCAM gene lead to congenital tufting enteropathy, severe intestinal epithelium homeostasis disorders, and Lynch and Lynch syndrome. Overexpression of EpCAM on stem cells of some cancers and the presence of this molecule on circulating tumor cells (CTCs) makes it a promising candidate for cancer diagnosis as well as tracing and isolation of CTCs.  相似文献   

10.
FRET技术在受体信号转导研究中的应用   总被引:1,自引:0,他引:1  
张峰  何成 《生命科学》2008,20(1):46-52
细胞信号传导是细胞生物学方面的重要内容之一,涉及生命过程的各个方面,包括生长、分化发育、增殖、凋亡、迁移等等,对维持细胞功能及机体生存至关重要。目前对细胞信号转导研究的技术手段多种多样,其中荧光共振能量转移技术(FRET)是研究细胞信号转导较为常用的一种技术,可以实现活细胞内蛋白质之间相互作用的实时检测。本文中我们以受体酪氨酸激酶为例,介绍FRET技术在受体介导细胞信号传导中的应用及进展情况。  相似文献   

11.
12.
Light sheet-based fluorescence microscopy (LSFM) is emerging as a powerful imaging technique for the life sciences. LSFM provides an exceptionally high imaging speed, high signal-to-noise ratio, low level of photo-bleaching and good optical penetration depth. This unique combination of capabilities makes light sheet-based microscopes highly suitable for live imaging applications. There is an outstanding potential in applying this technology to the quantitative study of embryonic development. Here, we provide an overview of the different basic implementations of LSFM, review recent technical advances in the field and highlight applications in the context of embryonic development. We conclude with a discussion of promising future directions.  相似文献   

13.
The extracellular domains of several integral membrane proteins are released from the cell surface by a group of enzymes known as "sheddases" through a process called "ectodomain shedding". Because many transmembrane growth and differentiation factors, including members of the epidermal growth factor (EGF) family that play a crucial role in development, require ectodomain shedding for proper action in vivo, proteolysis is now viewed as a regulatory mechanism in the developing embryos. Two recent reports by Zhao et al. provide evidence for the role of cell surface proteolysis by an ADAM (a disintegrin and metalloprotease) in the development of murine lung. Inhibition of tumor necrosis factor-alpha converting enzyme (TACE, ADAM17) by the hydroxamic acid-based metalloprotease inhibitor (TAPI), or a targeted mutation in Zn(2+)-binding domain of TACE, disrupts two essential epithelial functions in lung development: branching morphogenesis and cytodifferentiation. Evidence for the role of ADAMs as sheddases in development and growth factor signaling is discussed.  相似文献   

14.
Mice lacking the the plasma membrane dopamine transporter (DAT), following gene inactivation or knock out, show an increase in their spontaneous locomotor activity that is of the same magnitude than in normal mice treated with amphetamine or cocaine, known to increase levels of dopamine in the basal ganglia. Many adaptive responses have occurred in these animals than could not compensate for the hyper activity of the dopamine system. Surprisingly, while intracellular dopamine levels were of only 5%, extracellular dopamine levels were increased by 300%. We investigated the regulation of tyrosine hydroxylase (TH), the rate limiting enzyme of dopamine synthesis, and found that this enzyme is regulated at the levels of mRNA, protein, trafficking as well as in its regional, cellular and subcellular organization. Our results establish not only the central importance of the transporter as the key element controlling dopamine levels in the brain, but also its role in the behavioral and biochemical action of amphetamine, cocaine and morphine. In addition, these mice have provided key elements leading to possible clinical and social implications for illnesses such as Parkinson disease, attention deficit disorder and drug addiction.  相似文献   

15.
16.
Growing small seedling tubers from true seed, comparable with mini tubers, in controlled conditions could be a method to multiply healthy starting material of potato. In indoor farming systems, the conditions can be optimised for high production. In field trials, it is impossible to investigate the effects of environmental factors such as temperature and light separately. In this study, we performed three climate room experiments in which the effects of light intensity, temperature and percentage of far-red light in the light spectrum on tuber production were assessed. We found that increasing the average temperature reduced tuber number and tuber weight. Increasing the diurnal temperature variation while keeping the average temperature equal resulted in increased tuber size. The light treatments on the other hand only affected the number of tubers per plant: increasing light intensity and increasing the percentage of far-red light in the spectrum enhanced the number of tubers. Moreover, interaction in tuber production between inbred lines and temperature was significant, with some inbred lines being relatively tolerant to high temperature. These findings will help breed for heat tolerant varieties and optimise growing conditions for tuber production in indoor farming systems.  相似文献   

17.
Selenium-reducing microorganisms produce elemental selenium nanoparticles with particular physicochemical properties due to an associated organic fraction. This study identified high-affinity proteins associated with such bionanominerals and with nonbiogenic elemental selenium. Proteins with an anticipated functional role in selenium reduction, such as a metalloid reductase, were found to be associated with nanoparticles formed by one selenium respirer, Sulfurospirillum barnesii.  相似文献   

18.
Shade, in ecological sense, is not merely a lack of light, but a multi-faceted phenomenon that creates new and complex settings for community and ecosystem dynamics. Tolerating shade therefore affects plants’ ability to cope with other stressors, and also shape its interactions with surrounding organisms. The aim of this broad review was to map our current knowledge about how shade affects plants, plant communities and ecosystems – to gather together knowledge of what we know, but also to point out what we do not yet know. This review covers the following topics: the nature of shade, and ecological and physiological complexities related to growing under a canopy; plants’ capability of tolerating other stress factors while living under a shade – resource trade-offs and polytolerance of abiotic stress; ontogenetic effects of shade tolerance; coexistence patterns under the canopy – how shade determines the forest structure and diversity; shade-induced abiotic dynamics in understorey vegetation, including changing patterns of irradiance, temperature and humidity under the canopy; shade-driven plant–plant and plant–animal interactions – how shade mediates facilitation and stress, and how it creates differentiated environment for different herbivores and pollinators, including the role of volatile organic compounds. We also discuss the ways how vegetation in understorey environments will be affected by climate change, as shade might play a significant role in mitigating negative effects of climate change. Our review shows that living under a shade affects biotic and abiotic stress tolerance of plants, it also influences the outcomes of both symbiotic and competitive plant–plant and plant–animal interactions in a complex and dynamic manner. The current knowledge of shade-related mechanisms is rather ample, however there is much room for progress in integrating different implications of the multifaceted nature of shade into consistent and integral understanding how communities and ecosystems function.  相似文献   

19.
Hess S  Sausen N  Melkonian M 《PloS one》2012,7(2):e31165
With the advent of molecular phylogenetic techniques the polyphyly of naked filose amoebae has been proven. They are interspersed in several supergroups of eukaryotes and most of them already found their place within the tree of life. Although the 'vampire amoebae' have attracted interest since the middle of the 19th century, the phylogenetic position and even the monophyly of this traditional group are still uncertain. In this study clonal co-cultures of eight algivorous vampyrellid amoebae and the respective food algae were established. Culture material was characterized morphologically and a molecular phylogeny was inferred using SSU rDNA sequence comparisons. We found that the limnetic, algivorous vampyrellid amoebae investigated in this study belong to a major clade within the Endomyxa Cavalier-Smith, 2002 (Cercozoa), grouping together with a few soil-dwelling taxa. They split into two robust clades, one containing species of the genus Vampyrella Cienkowski, 1865, the other containing the genus Leptophrys Hertwig & Lesser, 1874, together with terrestrial members. Supported by morphological data these clades are designated as the two families Vampyrellidae Zopf, 1885, and Leptophryidae fam. nov. Furthermore the order Vampyrellida West, 1901 was revised and now corresponds to the major vampyrellid clade within the Endomyxa, comprising the Vampyrellidae and Leptophryidae as well as several environmental sequences. In the light of the presented phylogenetic analyses morphological and ecological aspects, the feeding strategy and nutritional specialization within the vampyrellid amoebae are discussed.  相似文献   

20.
P-glycoprotein (Pgp; ABCB1), a member of the ATP-binding cassette (ABC) superfamily, exports structurally diverse hydrophobic compounds from the cell, driven by ATP hydrolysis. Pgp expression has been linked to the efflux of chemotherapeutic drugs in human cancers, leading to multidrug resistance (MDR). The protein also plays an important physiological role in limiting drug uptake in the gut and entry into the brain. Substrates partition into the lipid bilayer before interacting with Pgp, which has been proposed to function as a hydrophobic vacuum cleaner. Low- and medium-resolution structural models of Pgp suggest that the 2 nucleotide-binding domains are closely associated to form a nucleotide sandwich dimer. Pgp is an outwardly directed flippase for fluorescent phospholipid and glycosphingolipid derivatives, which suggests that it may also translocate drug molecules from the inner to the outer membrane leaflet. The ATPase catalytic cycle of the protein is thought to proceed via an alternating site mechanism, although the details are not understood. The lipid bilayer plays an important role in Pgp function, and may regulate both the binding and transport of drugs. This review focuses on the structure and function of Pgp, and highlights the importance of fluorescence spectroscopic techniques in exploring the molecular details of this enigmatic transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号