首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Lung adenocarcinoma is a major form of non–small-cell lung cancer that frequently strikes nonsmokers. The disease is often diagnosed at a late stage and the 5-year survival rate is very low. Although previous studies found many somatic alterations associated with lung adenocarcinoma, the molecular basis of the development and progression of the disease is not well understood. We found that long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2), a putative tumor suppressor, was downregulated in both patient adenocarcinoma tissues and cultured lung cancer cells. Its tumor suppression function seemed to be dependent on its binding to miR-4735-5p. Changing the levels of CASC2 and miR-4735-3p in the cultured adenocarcinoma cells could affect the malignant phenotypes as well as growth of tumors derived from the cells injected into nude mice. Furthermore, the lncRNA and miR-4735-3p interplay likely the suppressed tumor growth through the downstream mammalian target of rapamycin signaling pathway. The results have revealed molecular details that may be critical for the development of lung adenocarcinoma, opening opportunities for the development of novel, and therapeutic tools.  相似文献   

4.
5.
miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In the present study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT, a known epithelial–mesenchymal transition (EMT) inducer, by directly binding to TBXT 3′-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed EMT and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.  相似文献   

6.
There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-Met by binding to its 3′-untranslated region. Silencing of c-Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.  相似文献   

7.
8.
Zou  Min  Zhang  Qiong 《Cytotechnology》2021,73(4):619-627
Cytotechnology - Cervical cancer (CC) is a common gynecological tumor, ranking second in the female reproductive system tumor. The work aims to study the function of miR-17-5p in the occurrence and...  相似文献   

9.
Li  Yan  Meng  Fandong  Sui  Chengguang  Wang  Yang  Cheng  Dali 《Molecular and cellular biochemistry》2022,477(6):1669-1679
Molecular and Cellular Biochemistry - Dysregulated circRNAs have potential roles in the progression of various cancer types, including cervical cancer (CaCx). The carcinogenic roles of circRNA...  相似文献   

10.
Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.  相似文献   

11.
Androgens and androgen receptors are vital factors involved in prostate cancer progression, and androgen ablation therapies are commonly used to treat advanced prostate cancer. However, the acquisition of androgen ablation therapy resistance remains a challenge. Recently, androgen receptor splicing variants lacking the ligand-binding domain have been reported to play a critical role in the acquisition of androgen ablation therapy resistance. In the present study, we revealed that the messenger RNA expression and the protein levels of an androgen receptor variant 7 (AR-V7) were higher in prostate cancer tissue samples and in the AR-positive prostate cancer cell line, VCaP. In contrast, microRNA (miR)-30c-1-3p/miR-103a-2-5p expression was significantly downregulated in tumor tissues and cells. miR-30c-1-3p/miR-103a-2-5p overexpression could inhibit AR-V7 expression, suppress VCaP cell growth, and inhibit AR-V7 downstream factor expression by directly targeting the 3′-untranslated region of AR-V7. Under enzalutamide (Enza) treatment, the effects of AR-V7 overexpression were the opposite of those of miR-103a-2-5p/miR-30c-1-3p overexpression; more importantly, the effects of miR-103a-2-5p/miR-30c-1-3p overexpression could be significantly reversed by AR-V7 overexpression under Enza. In summary, we demonstrated a novel mechanism of the miR-30c-1-3p/miR-103a-2-5p/AR-V7 axis modulating the cell proliferation of AR-positive prostate cancer cells via AR downstream targets. The clinical application of miR-30c-1-3p/miR-103a-2-5p needs further in vivo validation.  相似文献   

12.
13.
Epithelial–mesenchymal transition (EMT) is a crucial process that plays an important role in the invasion and metastasis of human cancers. High-mobility group AT-hook 2 (HMGA2) has been found to be involved in the EMT program, with its aberrant expression having been observed in a variety of malignant tumors. However, the mechanisms regulating HMGA2 expression remain incompletely understood. The objective of this study was to investigate whether mir-154 plays a critical role in EMT by regulating HMGA2. The expression levels of HMGA2 were examined in four samples of prostate cancer (PCa) tissue and adjacent non-tumorous tissue by Western blot analysis. The effects of forced expression of miR-154 or HMGA2 knockdown on PCa cells were evaluated by cell migration and invasion assays and Western blot analysis. HMGA2 was upregulated in the PCa tissue samples compared with the adjacent normal ones. Forced expression of miR-154 or HMGA2 knockdown significantly reduced the migratory and invasive capabilities of PCa cells in vitro and inhibited EMT gene expression, increased the levels of E-cadherin, an epithelial marker, and decreased the levels of vimentin, a mesenchymal marker. HMGA2 is a direct target gene of miR-154 by dual-luciferase reporter assay. Our findings suggest that miR-154 plays a role in regulating EMT by targeting HMGA2. Understanding the targets and regulating pathways of miR-154 may provide new insights into the underlying pathogenesis of PCa.  相似文献   

14.
15.
The approximately 14 kb mRNA of the polycystic kidney disease gene PKD1 encodes a large ( approximately 460 kDa) protein, termed polycystin-1 (PC-1), that is responsible for autosomal dominant polycystic kidney disease (ADPKD). The unique organization of its multiple adhesive domains (16 Ig-like domains/PKD domains) suggests that it may play an important role in cell-cell/cell-matrix interactions. Here we demonstrated that PKD1 promoted cell-cell and cell-matrix interactions in cancer cells, indicating that PC-1 is involved in the cell adhesion process. Furthermore in this study, we showed that PKD1 inhibited cancer cells migration and invasion. And we also showed that PC-1 regulated these processes in a process that may be at least partially through the Wnt pathway. Collectively, our data suggest that PKD1 may act as a novel member of the tumor suppressor family of genes.  相似文献   

16.
Ovarian cancer (OC) is a commonly diagnosed female cancer. Ligustrazine (LSZ), a natural compound, has been reported to exert anti-cancer activity, although the mechanisms underlying the anti-cancer effects are not clear. The present study investigated the impact of LSZ on cell proliferation and migration by regulating microRNA-211 (miR-211) expression using the human ovarian cancer SK-OV-3 and OVCAR-3 cell lines. OC cells were treated with 0, 0.5, 1, and 2 mM LSZ, and quantitative real-time PCR was utilized to measure miR-211 levels in SK-OV-3 and OVCAR-3 cells with different treatment. Moreover, to further confirm the roles of miR-211 in LSZ induced anti-tumor effects, miR-211 expression was inhibited by transfection of miR-211 inhibitors in SK-OV-3 cells. Cell proliferation of transfected cells was evaluated using the CCK-8 and colony formation assay. The scratch assay was employed to assess cell migration and transwell assay was performed for evaluating the cell invasion. Protein levels of epithelial–mesenchymal transition (EMT) markers were determined by Western blotting. We found that LSZ inhibited the viability, proliferation, migration and invasion ability of SK-OV-3 and OVCAR-3 cells in a dose-dependent manner; moreover, LSZ could significantly increase the expression of miR-211 in both SK-OV-3 and OVCAR-3, and knockdown of miR-211 in SK-OV-3 cells partially abrogated the anti-tumor behavior of LSZ by promoting the viability, proliferation, migration, invasion and EMT of SK-OV-3 cells. Thus, we found that LSZ can inhibit the proliferation and migration of OC cells via regulating miR-211. Our study suggests that LSZ might be a potential and effective treatment for OC.  相似文献   

17.
18.
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non–protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.  相似文献   

19.
Homoharringtonine (HHT), a natural alkaloid derived from the cephalotaxus, exhibited its anti-cancer effects in hematological malignancies clinically. However, its pesticide effects and mechanisms in treating solid tumors remain unclear. In this study, we found that HHT was capable of inhibiting tumor growth after 5-days treatment of breast cancer cells, MCF-7, in vivo. Furthemore, HHT also significantly inhibited the cancer cell growth and induced cell apoptosis in vitro. miRNA sequencing proved miR-18a-3p was noticeably downregulated in the cells after HHT treatment. Moreover, downregulating miR-18a-3p increased HHT-induced cell apoptosis; our data supported that HHT suppressed miR-18a-3p expression and inhibited tumorigenesis might via AKT-mTOR signaling pathway. In conclusion: our study proved that HHT suppressed breast cancer cell growth and promoted apoptosis mediated by regulating of the miR-18a-3p-AKT-mTOR signaling pathway, HHT may be a promising antitumor agent in breast cancer treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号