首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Distribution of biodiversity along the elevation gradient have been a subject of curiosity and a much argued topic in macroecology. Despite considerable attention, there is a lack of consensus on the pattern and the causal factors across regions and taxa. We studied amphibian distribution along the elevational gradient in Sikkim, Eastern Himalaya, part of a globally significant biodiversity hotspot. We conducted intensive field studies covering 300–4600 m elevation using Visual Encounter Survey and Night Stream Survey methods. We examined the effects of both spatial factors (area and mid-domain effect) and environmental variables (temperature, precipitation, moisture, potential evapotranspiration and actual evapotranspiration) on the distribution of amphibians along the elevational gradient. We recorded 25 species and 1368 individuals of amphibians after 1236 man-hours of visual encounter survey and 27 km night stream survey. Species richness of total amphibians and their sub groups (endemic, non-endemic, large-range and small-range) followed unimodal pattern showing a peak at middle elevation but with slight shift towards higher elevation for endemic species. Various environmental variables, especially actual evapotranspiration and mean annual precipitation, explained the elevational distribution trend of amphibians in the Eastern Himalaya. Spatial factors played no significant role in shaping the pattern of amphibian distribution (except endemics and large-range species showing fit to mid-domain effect). Local communities of the study area extract amphibians for food and medicine, especially from the diverse mid elevation zone, which should be closely monitored and curbed by the wildlife authorities.  相似文献   

3.
Aim To explore the variation in species richness along a subtropical elevation gradient, and evaluate how climatic variables explain the richness of the different life forms such as trees, shrubs, climbers, herbs and ferns. Location The study was made in a subtropical to warm temperate region in the south‐eastern part of Nepal, between 100 and 1500 m above sea level (a.s.l.). Methods The number of species was counted in six plots (50 × 20 m) in each of the 15 100 m elevation bands covering the main physiognomic structures along an imaginary transect. Each species recorded was assigned to a life form. Potential evapotranspiration (PET, i.e. energy), mean annual rainfall (MAR), and their ratio (MI = moisture index) were evaluated as explanatory variables by means of generalized linear models (GLM). Each variable was tested individually, and in addition MAR and PET were used to test the water‐energy dynamics model for each life form. Results The richness of herbaceous species, including herbaceous climbers, was unrelated to any of the climate variables. PET was strongly negatively correlated with elevation, and the following relationships were found between increasing PET and richness: (i) shrubs, trees and total species (sum of all life forms) showed unimodal responses (ii) ferns decreased monotonically, and (iii) woody climbers increased monotonically. Richness of all woody groups increased monotonically with MAR and MI. The water‐energy dynamics model explained 63% of the variation in shrubs, 67% for trees and 70% for woody species combined. Main conclusions For the various herbaceous life forms (forbs, grasses, and herbaceous climbers) we found no significant statistical trends, whereas for woody life forms (trees, shrubs, and woody climbers) significant relationships were found with climate. E.M. O’Brien's macro‐scale model based on water‐energy dynamics was found to explain woody species richness at a finer scale along this elevational‐climatic gradient.  相似文献   

4.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming.  相似文献   

5.
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.  相似文献   

6.
7.
The White-Winged Wood duck (Asarcornis scutulata) is an endangered forest wetland bird currently on the verge of extinction due to an array of anthropogenic pressures. It has been reported that global climate change could affect the distribution of many bird species globally. Therefore, an understanding the potential distribution of the White-Winged Wood duck in future climate scenarios could facilitate the creation of immediate conservation plans and the mitigation of subsequent threats. This is the first ever study on the distribution of White-Winged Wood Duck (WWWD) where Representative Concentration Pathway (RCP) 8.5 scenario was used to forecast the distribution of the WWWD in the Indian Eastern Himalayan region in the 2050s and 2070s. The study revealed that 1.87 % of the total area of IEH has the high potential distribution of WWWD. The state of Assam alone includes 1.68 % of the highly potential habitat in the region. It was predicted that 436.61 km2 of highly potential habitat would be lost by 2070. Changes in the annual temperature range, precipitation in the wettest months (June to September), and precipitation decrease in the warmest quarter (October to December) would result in the loss of highly potential habitats. Under the influence of climate change, the habitat of WWWD in the eastern part of the region is likely to shift towards the western part. It was found that there will be a decline in potential habitat in the Indian states of Arunachal Pradesh, Assam, Nagaland, and Tripura located in the IEH under future climate scenarios. The potential of areas located at the Bhutan and Assam border would increase for supporting WWWD as this species' requires the average annual precipitation about 1000–1200 mm. However, the simultaneous anthropogenic activity would further destroy potential habitats in the future. The current study has provided baseline data on the potential distribution of WWWD in the IEH region for immediate conservation management plans.  相似文献   

8.
Abstract The pollination ecology of Pedicularis punctata was studied in the Pir Panjal Range of the Kashmir Himalaya in the summer of 1989. Its nectarless, rostrate, long-tubed flower was found to be pollinated exclusively by Bombus foragers vibrating pollen while the stigma contacted pollen in the pollinator's cervical crevice. Workers of Bombus tunicatus and B. flavothoracicus comprised 95% of its pollinators. Pollen-foraging fidelity of its pollinators was greatest where diversity of Bombus -pollinated plant species in three plant communities was least. Foragers on other plants carried virtually no Pedicularis pollen. P. punctata is a mid-season blooming species similar in its pollination syndrome to comparable species in other geographic regions. The enigmatic function of its long, nectarless corolla tube, even more exaggerated in other Asiatic species, requires further investigation.  相似文献   

9.
Abstract In the summer of 1990, the pollination ecology of Pedicularis megalantha was studied in the montane-subalpine spruce-fir forest zone (2750-3050 m) on the north slope of Mt. Huttoo at Narkanda, Himachal Pradesh, in the Indian Himalaya. Its yellow, long-tubed, nectarless flower with a curled rostrum overarched by a broad, inverted lower corolla lip was pollinated exclusively by Bombus albopleuralis and B. tunicatus workers hanging inverted from the corolla and vibrating pollen from introrse anthers concealed within the galea and releasing pollen through a small ventral opening in the galea base. The stigma, protruding from the tip of the rostrum, contacted pollen deposited on the ventral side of the insect's thorax. Corbicular pollen loads from P. megalantha pollinators indicated equal numbers of monolectic and oligolectic foragers. P. megalantha appeared to suffer from competition for pollinators by Cynoglossum wallichii at one site but to be favored in a mixed plant community with nectariferous species offering a forage resource complementary to Pedicularis pollen. As in P. punctata , the long, nectarless corolla tube of P. megalantha appears to function in extending the rostrate vibration pollination mechanism beyond the plant's foliage, which would interfere with its function. It is not an adaptation for nectar-foraging lepidopteran pollinators. P. megalantha was also found to be a root hemiparasite.  相似文献   

10.
Forests of an elevational transect in the central Himalayan region were studied regarding their tree species composition and structural features. In spite of many differences in compositional and structural features in different forest stands, the arrangement of stands in the ordinations based separately on species composition and structural features exhibit many similarities. Disturbances such as landslides and forest fires play the most important role in the distributor of particular species.  相似文献   

11.
High mountains around the globe are some of the most vulnerable ecosystems to climate change and of great concern for conservation. The Himalayan Mountains are experiencing a higher warming than average global warming, which can significantly impact their biodiversity, vegetation distribution and ecosystem structure. There is a need to study the process of wood formation in Himalayan conifers to have a better understanding of their growth responses to predicted climate change. Variations in the climatic factors regulating cambial activity would result in changes in the timing of cambial phenology. In this study, the variations in the timing of different stages of cambial phenology (cell enlargement stage, wall-thickening stage and cell maturation stages) in pindrow fir (Abies pindrow) were investigated from anatomical observations of wood microcores collected during 2014-15 along an elevation range of c.2300−3000 m asl in the north-western Himalaya. The onset of all three cambial phenological stages was significantly correlated with elevation, with onset of cambial activity happening more than a week earlier at the lowest elevation than at the highest elevation site. Although the termination of wall-thickening and maturation stage appeared minimally related to elevation, the cell-enlargement stage showed significant correlation with elevation, with tracheid formation ceasing approximately three weeks earlier in trees at the highest elevation. The timing of these phenological stages did not show strong variations between the two study years. Our findings provide new data on the timings of cambial phenophases and help to understand tree growth response to ongoing changing climate in the Himalayan region.  相似文献   

12.
Plant species diversity and endemism demonstrate a definite trend along altitude. We analyzed the (i) pattern of tree diversity and its endemic subset (ii) frequency distribution of altitudinal range and (iii) upper & lower distributional limits of each tree species along altitudinal gradients in eastern Himalaya. The study was conducted in Subansiri district of Arunachal Pradesh. Data on the tree species (cbh ≥ 15 cm) were gathered every 200 m steps between 200 m and 2200 m gradients. Tree diversity demonstrated a greater variation along the gradients. A total of 336 species (of which 26 are endemic) were recorded belonging to 185 genera and 78 families. The alpha diversity demonstrated a decreasing pattern with two maxima (i.e., elevational peaks) along the gradients; one in 601–1000 m and the other in 1601–1800 m, corresponding to transition zones between tropical-subtropical and subtropical-temperate forests. Pattern diversity revealed a narrow range along the gradients. Frequency of altitudinal range was distributed between 1 and 41. Only one species (Altingia excelsa) showed widest amplitude, occurring over the entire range. Highest level of species turnover was found in 400–600 m step at lower elevational limit whereas for upper elevational limit, the highest turn over was recorded between 800 and 1000 m. Tree diversity decreased and its endemic subset increased along the gradients. Two maximas in tree diversity pattern correspond to forest transition zones with subtropical-temperate transition is narrower than tropical-subtropical. The pattern observed here could be attributed to varied microclimates or environmental heterogeneity. If altitudinal amplitude of a species is considered as an aspect of its niche breadth, it is clear from these results that niche breadth in these organisms is in fact independent of the diversity of the assemblage in which they occur. This analysis calls for detailed floristic studies to determine the breadth of changes between adjacent forest types and details of local species richness in high diversity areas.  相似文献   

13.
Aim In eastern Nepal, forests occupy an elevation gradient of 4000 m with bioclimatic zones from near tropical to alpine. Understorey plants and trees were censused to measure species density and identify patterns of ecological change. By sampling in a manner robust against spurious mid‐domain effects, I aim to identify biologically valid controls on species density. Location The study area consists of land below 4250 m elevation between 27.1 and 27.8° N latitude, 86.5 and 88.0° E longitude on the southern slopes of the Himalaya Range in eastern Nepal. Sampling sites are limited to intact, natural forest with relatively little human impact. Methods Team members counted species of understorey plants and trees ≥ 10 cm d.b.h. in 0.04 ha plots throughout the study area. In addition, basal area, leafing phenology and species composition were determined for the trees in each plot. Estimates of regional species density were compiled for successive 250 m elevation bands from 250 to 4250 m elevation. Species density trends were identified and compared with the expectations of O'Brien's [Journal of Biogeography 25 (1998) 379–398] climate‐based water–energy dynamics model. Results Stand basal area, tree leafing phenology and taxonomic composition (angiosperm vs. gymnosperm) show non‐random change with elevation. Understorey plant and tree species density both have a humped, unimodal trend with more species near the bottom of the gradient and fewest at the top. These trends are consistent with expected effects of the climatically active water and energy variables. After curve‐fitting, significant spatial structure in the residuals suggests that tree communities within the 1750–2250 m elevation range do not realize their climatic potential species richness. Main conclusions Neither mid‐domain effects nor biologically valid boundary effects like dispersal limitation explain the plant species density trends observed. Trends do fit a model in which species density is controlled by the same ‘active’ climatic variables that predict species richness on continental scales. Patterns of leafing phenology on the elevation gradient provide further support for the hypothesis of environmental control of species density. The productivity–diversity linkage that exists on continental scales may also apply on the smaller scale of a Himalayan elevation gradient. Human activity and possible competitive exclusion by Castanopsis tribuloides are the two best explanations for the observed decline in tree species density at 1750–2250 m elevation. Burning, lopping for fodder and livestock grazing might account for the decline, but this study does not assess the relative importance of these activities. The elevation richest for understorey plant and tree species (500–1500 m) also has the most severe reduction in forest cover. Local farmers deserve credit for sustaining plant biodiversity in forest enclaves, but further loss of forest at these elevations should be discouraged.  相似文献   

14.
Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.  相似文献   

15.
Medicinal and aromatic plants (MAPs) contribute to human well‐being via health and economic benefits. Nepal has recorded 2331 species of MAPs, of which around 300 species are currently under trade. Wild harvested MAPs in Nepal are under increasing pressure from overexploitation for trade and the effects of climate change and development. Despite some localized studies to examine the impact of climate change on MAPs, a consolidated understanding is lacking on how the distribution of major traded species of MAPs will change with future climate change. This study identifies the potential distribution of 29 species of MAPs in Nepal under current and future climate using an ensemble modeling and hotspot approach. Future climate change will reduce climatically suitable areas of two‐third of the studied species and decrease climatically suitable hotspots across elevation, physiography, ecoregions, federal states, and protected areas in Nepal. Reduction in climatically suitable areas for MAPs might have serious consequences for the livelihood of people that depend on the collection and trade of MAPs as well as Nepal''s national economy. Therefore, it is imperative to consider the threats that future climate change may have on distribution of MAPs while designing protected areas and devising environmental conservation and climate adaptation policies.  相似文献   

16.
Vetaas  Ole R. 《Plant Ecology》2000,146(2):137-144
Poor regeneration of oak forest has been observed in north America and Eurasia. In the Himalaya it has mainly been explained by anthropogenic pressures. This study analyses the regeneration of two Quercus semecarpifolia Sm. forests (2–3000 m a.s.l.), where one forest has almost nil disturbance and the other has different degrees of canopy disturbance. The relationships between biotic and abiotic environmental variables and the number of Quercus semecarpifolia seedlings and saplings (i.e., recruits <10 cm Diameter at Breast Height (DBH)) were analysed by means of Generalized Additive Models (GAM). The two forests were compared with respect to size-class distributions of mature trees (i.e., >10 cm DBH), and the number of recruits.The size-class distributions indicate that regeneration is most reliable in the nearly undisturbed forest. Most recruits were found under high canopy cover and high potential radiation. Canopy disturbance has a negative effect on the number of seedlings. Seedlings seem to prefer a pH of around 6, Loss-on-Ignition between 20 and 30 %, and total nitrogen between 2 and 3 %. In general, there were very few plots with saplings, and there was not a clear relationship between the number of saplings and the soil variables. The size-class diagrams indicate a lack of young trees in the disturbed forest, and it is hypothesized that fire may inhibit recruits reaching the canopy phase.  相似文献   

17.
The paper presents a study of settlement processes in western Nepal. It emphasizes the linkages between settlement history, cultural ecology, and political economy as these relate to resources, marginality, and territory. Regional settlement trends are examined in accordance with land occupancy and tenure arrangements. Village settlement strategies are analyzed within a micro-processual framework that incorporates political economic perspectives on village land use and resource distributions. The past, present, and future roles of settlement in the human adaptation process of west Nepal's mountain populations is critically examined in the contexts of historical land policies and current rural political and environmental systems.  相似文献   

18.
高寒草毡层基本属性与固碳能力沿水分和海拔梯度的变化   总被引:1,自引:0,他引:1  
苏培玺  周紫鹃  侍瑞  解婷婷 《生态学报》2018,38(3):1040-1052
高寒草毡层是高原寒区自然植被下形成的松软而坚韧且耐搬运的表土层,认识其生态功能是促进草牧业生产休养保护和工程施工主动利用的前提。通过对青藏高原东部若尔盖高原植被的广泛调查,在布设沼泽、退化沼泽、沼泽化草甸、湿草甸、干草甸和退化草甸水分梯度群落样地,以及亚高山草甸、亚高山灌丛草甸、高山灌丛草甸和高山草甸海拔梯度群落样地的基础上,通过对不同类型群落样地草毡层容重、土壤颗粒组成和土壤有机碳(SOC)含量的测定分析,比较了水分和海拔梯度下草毡层固碳能力。结果表明,草毡层厚度平均为30cm,沼泽湿地草毡层容重最小,SOC含量在300g/kg以上;退化草甸容重最高,SOC含量显著下降。不同群落草毡层SOC密度在10—24kg C/m~2之间,随着土壤水分有效性的降低而降低;高山灌丛草甸草毡层SOC密度比草甸高15%。研究得出,保持草毡层稳定的质量含水量阈值为30%,SOC含量阈值为30g/kg;高寒植被草毡层在沼泽到草甸的退化演替中,容重、紧实度变大,有机碳含量减少,碳密度和碳储量下降;灌丛草甸的固碳能力大于草甸,但灌丛草甸的生产功能降低;保持可持续发展的草地生产能力,维护固碳生态功能,需要防止草毡层退化,抑制草甸向灌丛草甸演替。  相似文献   

19.
ABSTRACT

Background: Several studies have documented the variation in species diversity patterns along elevational gradients in the Himalaya, but few have reported the evolutionary and biogeographic processes behind these patterns.

Aims: To understand whether evolutionary history and phylogeny have any role in structuring plant species communities along an elevational gradient in the Sikkim Himalaya.

Methods: We used data on endemic plant species occurrence from primary and secondary sources to construct family-level phylogenetic supertrees for different growth forms with the help of Phylomatic tool of Phylocom. These phylogenetic supertrees were used as a base for testing phylogenetic diversity (PD), niche conservatism, diversification time patterns and phylogenetic structure of various plant growth forms along an elevational gradient.

Results: PD was the highest at mid-elevations for all growth forms and PD had a significant positive correlation with endemic species richness. Species at mid-elevations were dominated by the ancestral/primitive taxa. There was phylogenetic clustering at higher elevations and phylogenetic overdispersion at lower and mid-elevations for the majority of the growth forms.

Conclusions: Time-for-speciation effect and niche conservatism along elevation (retention of niche-related ancestral elevational distribution over evolutionary time scale by species) together determine plant species diversity patterns in the Himalaya.  相似文献   

20.
Habitat management within and outside protected areas is a key to effective conservation of wildlife. This is particularly vital for declining wildlife populations within the boundary of conservation areas, while sharing their potential habitat range with foraging livestock. In an effort to understand the habitat selection by Himalayan musk deer (Moschus chrysogaster) and explore any potential impacts of livestock grazing, we conducted the present study in a conservation area of central Nepal Himalaya. We recorded data on musk deer and livestock presence and absence (based on signs of fecal pellet, footprint, and resting site) along the elevational transect with associated topographic features (elevation, slope, aspect, distance to water, and vantage point distance) and vegetation features (tree spp., shrub spp., herb spp., and canopy-cover). Using logistic regression model we found that elevation, aspect, canopy-cover, and tree spp. in the area significantly affect the likelihood of habitat selection by musk deer. In particular, they selected the southern aspect of the area with elevation  3529 m, canopy-cover  42%, and with stands of Pinus spp. and Abies spp. Slope and canopy-cover significantly affected the foraging area selection by livestock. They selected the gentler slopes in the northern aspect of the area with altitude < 3529 m and canopy-cover < 42%. Also, presence of one group of herbivore (i.e. musk deer and livestock) was not found to affect the likelihood of habitat selection by the other group. These independent habitat selections are possibly the responses to morphological and behavioral adaptations than to impacts and interactions between these two groups of herbivores. We suggest to avoid any disturbances and livestock grazing on the area that disrupt the resources and conditions likely selected and occupied by musk deer population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号