首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu  Zhong Lin  Zhu  Zheng Ming 《Protoplasma》2022,259(4):1029-1045

The present paper aims to shed light on the influence of N6-methyladenosine (m6A) long non-coding RNAs (lncRNAs) and immune cell infiltration on colorectal cancer (CRC). We downloaded workflow-type data and xml-format clinical data on CRC from The Cancer Genome Atlas project. The relationship between lncRNA and m6A was identified by using Perl and R software. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed. Lasso regression was utilized to construct a prognostic model. Survival analysis was used to explore the relationship between clusters of m6A lncRNAs and clinical survival data. Differential analysis of the tumor microenvironment and an immune correlation analysis were used to determine immune cell infiltration levels in different clusters and their correlation with clinical prognosis. The expression of lncRNA was tightly associated with m6A. The univariate Cox regression analysis showed that lncRNA was a risk factor for the prognosis. Differential expression analysis demonstrated that m6A lncRNAs were partially highly expressed in tumor tissue. m6A lncRNA-related prognostic model could predict the prognosis of CRC independently. “ECM_RECEPTOR_INTERACTION” was the most significantly enriched gene set. PARP8 was overexpressed in tumor tissue and high-risk cluster. CD4 memory T cells, activated resting NK cells, and memory B cells were highly clustered in the high-risk cluster. All of the scores were higher in the low-risk group. m6A lncRNA is closely related to the occurrence and progression of CRC. The corresponding prognostic model can be utilized to evaluate the prognosis of CRC. m6A lncRNA and related immune cell infiltration in the tumor microenvironment can provide novel therapeutic targets for further research.

  相似文献   

2.
3.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   

4.
5.
Long non-coding RNAs (lncRNAs) have been reported to be of great importance in tumorigenesis and progression of a variety of cancers. However, the role of lncRNAs in ovarian cancer (OC) remains largely unknown. In the present study, we identified a novel lncRNA, LOC100288181 (named as Lnc-OC1), which acted as a key regulator in the development and progression of OC. The combined Gene Expression Omnibus (GEO) database analysis revealed that Lnc-OC1 was significantly upregulated in OC tissues and Kaplan-Meier survival analysis confirmed that high Lnc-OC1 expression was associated with poor prognosis of OC patients. Importantly, we also demonstrated that knockdown of Lnc-OC1 suppressed cell proliferation, colony formation, invasion and migration in vitro and inhibited tumorigenicity in vivo. Mechanistically, Lnc-OC1 repressed the expression of endogenous miR-34a and miR-34c as a sponge and vice versa. Moreover, rescue experiments demonstrated that the oncogenic function of Lnc-OC1 at least partially depended on suppressing miR-34a and miR-34c. In conclusion, our results suggest that the Lnc-OC1-miR-34a/34c axis may play a pivotal role in OC, and may serve as a potential diagnostic biomarker and a powerful therapeutic target for OC.  相似文献   

6.
7.
8.
Currently, resistance to trastuzumab, a human epidermal growth factor receptor 2 (HER2) inhibitor, has become one major obstacle for improving the clinical outcome of patients with advanced HER2+ breast cancer. While cell behaviour can be modulated by long non‐coding RNAs (lncRNAs), the contributions of lncRNAs in progression and trastuzumab resistance of breast cancer are largely unknown. To this end, the involvement and regulatory functions of lncRNA SNHG14 in human breast cancer were investigated. RT‐qPCR assay showed that SNHG14 was up‐regulated in breast cancer tissues and associated with trastuzumab response. Gain‐ and loss‐of‐function experiments revealed that overexpression of SNHG14 promotes cell proliferation, invasion and trastuzumab resistance, whereas knockdown of SNHG14 showed an opposite effect. PABPC1 gene was identified as a downstream target of SNHG14, and PABPC1 mediates the SNHG14‐induced oncogenic effects. More importantly, ChIP assays demonstrated that lncRNA SNHG14 may induce PABPC1 expression through modulating H3K27 acetylation in the promoter of PABPC1 gene, thus resulting in the activation of Nrf2 signalling pathway. These data suggest that lncRNA SNHG14 promotes breast cancer tumorigenesis and trastuzumab resistance through regulating PABPC1 expression through H3K27 acetylation. Therefore, SNHG14 may serve as a novel diagnostic and therapeutic target for breast cancer patients.  相似文献   

9.
10.
11.
Accumulating evidence has indicated that deregulation of lncRNAs plays essential roles in colorectal cancer (CRC) carcinogenesis. The goal of this study was to analyze the expression of lncRNAs in colorectal cancer and their association with clinicopathological variables. Bioinformatics analysis of published CRC microarray data was performed to identify the important lncRNAs. The expression levels of candidate genes were assessed in the human colon cancer/normal cell lines, CRC, adenomatous colorectal polyps, and their marginal tissues by qRT-PCR. Moreover, the methylation status of the TRPM2-AS1 promoter was studied using qMSP assay. Furthermore, we investigated the molecular mechanisms of these lncRNAs in CRC progression using in silico analysis. Microarray analysis revealed that lncRNAs SNHG6, MIR4435-2HG, and TRPM2-AS1 were upregulated in CRC. These results were validated in colon cell lines. Moreover, qRT-PCR showed that the expression levels of SNHG6 and TRPM2-AS1 were upregulated in the colorectal tumor tissues compared with their paired tissues. Nonetheless, there was no significant increase in MIR4435-2HG expression in CRC samples. Furthermore, we observed a significant hypomethylation of TRPM2-AS1 promoter and its activation in CRC tissues. By in silico analysis, we found that the lncRNAs upregulation could promote proliferation and drug resistance of colorectal cancer cells via miRNAs sponging and modulation of their targets expression. In conclusion, based on our results upregulation of SNHG6 and TRPM2-AS1, and hypomethylation of TRPM2-AS1 promoter might be considered as potential diagnostic biomarkers for CRC initiation and development.  相似文献   

12.
13.
Long non-coding RNAs (lncRNAs) have recently emerged as key players in many physiologic and pathologic processes. Although many lncRNAs have been identified, few lncRNAs have been characterized functionally in aging. In this study, we used human fibroblast cells to investigate genome-wide lncRNA expression during cellular senescence. We identified 968 down-regulated lncRNAs and 899 up-regulated lncRNAs in senescent cells compared with young cells. Among these lncRNAs, we characterized a senescence-associated lncRNA (SALNR), whose expression was reduced during cellular senescence and in premalignant colon adenomas. Overexpression of SALNR delayed cellular senescence in fibroblast cells. Furthermore, we found that SALNR interacts with NF90 (nuclear factor of activated T-cells, 90 kDa), an RNA-binding protein suppressing miRNA biogenesis. We demonstrated that NF90 is a SALNR downstream target, whose inhibition led to premature senescence and enhanced expressions of senescence-associated miRNAs. Moreover, our data showed that Ras-induced stress promotes NF90 nucleolus translocation and suppresses its ability to suppress senescence-associated miRNA biogenesis, which could be rescued by SALNR overexpression. These data suggest that lncRNA SALNR modulates cellular senescence at least partly through changing NF90 activity.  相似文献   

14.
BackgroundThe pathogenesis of bladder cancer (BLCa) is still unclear. Long non-coding RNAs (lncRNAs) participate in diverse biological processes across every branch of life, especially in cancer. Dysregulated lncRNAs in BLCa and their biological significance require further investigations.MethodsHerein, a differential expression profile of lncRNAs in BLCa was conducted by microarray data. The expression level of lncRNA LINC01451 in 70 pairs of BLCa tissue samples and different BLCa cell lines were analyzed via real-time quantitative PCR. The CRISPR-CAS9 technique was employed to establish the LINC01451 stably transfected cell lines. Loss-of-function, as well as gain-of-function assays were carried out to evaluate the effects of LINC01451 on cell proliferation, migration, and invasion. Patient-derived xenograft (PDX) mouse models were adopted in the in vivo experiments. Western blot, biotinylated RNA probe pull-down assay, fluorescence in situ hybridization, and immunohistochemistry were utilized to assess the underlying molecular mechanisms of LINC01451 in BLCa.ResultsLINC01451 was identified a novel functional lncRNA, whose expression level in BLCa tissues was significantly higher compared with the normal tissues. Furthermore, it was found that LINC01451 directly docked LIN28A and LIN28B, and promoted the proliferation, invasion, and metastasis of BLCa. Mechanistically, LINC0145 was shown to depend on LIN28A and LIN28B, facilitated epithelial-mesenchymal transition (EMT) through activating the TGF-β/Smad signaling pathway, which subsequently aggravated BLCa progression.ConclusionsWe demonstrates that LINC01451 drives EMT-induced BLCa progression by activating the LIN28/TGF-β/Smad signaling pathway. Promisingly, LINC01451 acts as a prognostic biomarker and a novel therapeutic target for BLCa.  相似文献   

15.
Long noncoding RNAs (lncRNAs) have been demonstrated to regulate a variety of cell processes and involve in the development and progression of colorectal cancer (CRC). Recently, the circulating lncRNAs have emerged as minimally invasive biomarkers for cancer diagnosis and prognosis. We aimed to examine the plasma expression level of long noncoding RNAs lnc-ATB, lnc-CCAT1, and lnc-OCC-1 in CRC patients and evaluate the clinical values. A total of 74 pretreatment CRC and 74 healthy blood biopsies were subjected to differentially evaluate the expression levels of three lncRNAs (OCC-1, CCAT1, and ATB). Briefly, after plasma separation and total RNA extraction, RNAs were reversely transcribed to complementary DNA followed by amplification using a quantitative real-time polymerase chain reaction technique for lncRNA expression analysis. The results showed that the expression levels of lnc-ATB (p < 0.001) and CCAT1 (p = 0.024), but not OCC-1 (p = 0.24), were significantly upregulated in the CRC compared with the healthy group. The calculated AUC of ROC was 0.78 (95% confidence interval [CI]: 0.811–0.94) for lnc-ATB and 0.64 (95% CI: 0.811–0.94) for CCAT1, which were indicative of a high discriminatory power (p < 0.001). The highest accuracy for lncRNA-ATB was obtained at a cutoff point of 2.5, which corresponded to sensitivity and specificity of 82% and 75%, respectively. Our results suggested a significant accuracy of lncRNA-ATB and lncRNA-CCAT1 in distinguishing CRC patients from healthy individuals.  相似文献   

16.
17.
Long noncoding RNAs (lncRNAs) have recently emerged as important biomarkers of cancer progression. Here, we proposed to develop a lncRNA-based signature with a prognostic value for colorectal cancer (CRC) overall survival (OS). Through mining microarray datasets, we analyzed the lncRNA expression profiles of 122 patients with CRC from Gene Expression Omnibus. Associations between lncRNA and CRC OS were firstly evaluated through univariate Cox regression analysis. A random survival forest method was applied for further screening of the lncRNA signature, which resulted in eight lncRNAs, including PEG3-AS1, LOC100505715, MINCR, DBH-AS1, LINC00664, FAM224A, LOC642852, and LINC00662. Combination of the eight lncRNAs weighted by their multivariate Cox regression coefficients formed a prognostic signature, through which, we could divide the 122 patients with CRC into two subgroups with significantly different OS. Good robustness of the lncRNA signature's prognostic value was verified through an independent data set consisting of 55 patients with CRC. In addition, gene set enrichment analysis indicated the potential association between high prognostic value and oxygen metabolism-related processes. This result should indicate that lncRNAs could be a useful signature for CRC prognosis.  相似文献   

18.

Objectives

Long non‐coding RNAs (lncRNAs) are characterized as a group of RNAs that more than 200 nucleotides in length and have no protein‐coding function. More and more evidences provided that lncRNAs serve as key molecules in the development of cancer. Deregulation of lncRNAs functions as either oncogenes or tumour suppressor genes in various diseases. Recently, increasing studies about PANDAR in cancer progression were reported. In our review, we will focus on the current research on the character of PANDAR include the clinical management, tumour progression and molecular mechanisms in human cancers.

Materials and methods

We summarize and analyze current studies concerning the biological functions and mechanisms of lncRNA PANDA in tumour development. The related studies were obtained through a systematic search of Pubmed.

Results

PANDAR was a well‐characterized oncogenic lncRNA and widely overexpressed in many tumours. PANDAR is upregulated in many types of cancer, including colorectal cancer, lung cancer, renal cell carcinoma, cholangiocarcinoma, osteosarcoma, thyroid cancer and other cancers. Upregulation of PANDAR was significantly associated with advanced tumour weights, TNM stage and overall survival. Furthermore, repressed of PANDAR would restrain proliferation, migration and invasion.

Conclusion

PANDAR may act as a powerful tumour biomarker for cancer diagnosis and treatment.  相似文献   

19.
20.
Long noncoding RNAs (lncRNAs) play a wide range of roles in the epigenetic regulation of crucial biological processes, but the functions of lncRNAs in cortical development are poorly understood. Using human embryonic stem cell (hESC)-based 2D neural differentiation approach and 3D cerebral organoid system, we identified that the lncRNA PAUPAR, which is adjacent to PAX6, plays essential roles in cortical differentiation by interacting with PAX6 to regulate the expression of a large number of neural genes. Mechanistic studies showed that PAUPAR confers PAX6 proper binding sites on the target neural genes by directly binding the genomic regions of these genes. Moreover, PAX6 recruits the histone methyltransferase NSD1 through its C-terminal PST enrichment domain, then regulate H3K36 methylation and the expression of target genes. Collectively, our data reveal that the PAUPAR/PAX6/NSD1 complex plays a critical role in the epigenetic regulation of hESC cortical differentiation and highlight the importance of PAUPAR as an intrinsic regulator of cortical differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号