首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to analyze simultaneously the temporal relationship between the changes of circadian rhythms of brown adipose tissue (BAT) thermogenesis and core temperature (Tc) by dual probe telemetric monitoring transmitters and to determine the role of endogenous arginine vasopressin (AVP) in the circadian rhythms of BAT temperature (TBAT) and Tc in male rats. The key observations in this study are: (1) Increase in TBAT commenced approximately 8 min before Tc increases at the start of transition from the light to dark phase. Whereas at the start of transition from the dark to light phase, decrease in TBAT commenced approximately 3 min before Tc decreases. The data show that circadian changes of BAT thermogenesis do indeed play a significant role in the overall maintenance of the circadian rhythm of core temperature. (2) The plasma AVP level was significantly elevated when core temperature decreases during the light phase, suggesting that endogenous AVP is involved in thermoregulatory processes during the light phase. V1a receptor antagonist could elevate core and BAT temperature during the light period, suggesting that endogenous AVP, acting through V1a receptor, could be involved in tonic thermoregulatory processes.V1a receptor antagonist can increase the blood lipid metabolism, suggesting that the mechanism of endogenous AVP in tonic thermoregulatory processes during light period could involve the suppression of lipolysis in BAT and other peripheral tissues. In summary, this study demonstrated that endogenous vasopressin contributes to reduced BAT themogenesis and body temperature in the light phase of the circadian cycle.  相似文献   

2.
Temperature loggers were implanted to record core body temperature (Tcore) and rumen temperature (Trumen) in sheep. The relationship between Tcore and Trumen was compared for fleeced and shorn Merino sheep over a range of environmental temperatures and during stressors involved with shearing. Fleeced sheep maintained higher Tcore and Trumen than shorn sheep in all environmental conditions tested (from thermoneutral up to 33 °C and 55% relative humidity). Shearing of the fleeced sheep resulted in those sheep having a lower Tcore when exposed to hot conditions, compared to the previously shorn sheep. Respiratory rates of fleeced sheep followed similar patterns and were higher than shorn sheep under all environmental conditions. After the fleeced sheep were shorn, their respiratory rates decreased to rates similar to the previously shorn sheep when under heat load, suggesting heat loss other than respiratory evaporative heat loss was augmented.  相似文献   

3.
Little is known about the thermoregulatory response of the eland, a tropical animal often raised in temperate climate. We compared the surface temperature (Ts) of the eland with that of similarly sized Holstein–Friesian dairy cattle at three different ambient temperatures (Ta) to get better evidence about thermal response. The Ts of all body areas (neck, dewlap, trunk, body forepart, barrel, body hind part, forelimb and rear limb) did not differ at Ta 29.2 °C, but at Ta 12.5 °C all the areas of the eland (except the neck) had lower mean Ts than those areas in cattle. At Ta 0.4 °C, only the eland dewlap had a lower Ts and the eland neck had a higher Ts than that in cattle.  相似文献   

4.
It has been speculated that the control of core temperature is modulated by physiological demands. We could not prove the modulation because we did not have a good method to evaluate the control. In the present study, the control of core temperature in mice was assessed by exposing them to various ambient temperatures (Ta), and the influence of circadian rhythm and feeding condition was evaluated. Male ICR mice (n=20) were placed in a box where Ta was increased or decreased from 27 °C to 40 °C or to −4 °C (0.15 °C/min) at 0800 and 2000 (daytime and nighttime, respectively). Intra-abdominal temperature (Tcore) was monitored by telemetry. The relationship between Tcore and Ta was assessed. The range of Ta where Tcore was relatively stable (range of normothermia, RNT) and Tcore corresponding to the RNT median (regulated Tcore) were estimated by model analysis. In fed mice, the regression slope within the RNT was smaller in the nighttime than in the daytime (0.02 and 0.06, respectively), and the regulated Tcore was higher in the nighttime than in the daytime (37.5 °C and 36.0 °C, respectively). In the fasted mice, the slope remained unchanged, and the regulated Tcore decreased in the nighttime (0.05 and 35.9 °C, respectively), while the slopes in the daytime became greater (0.13). Without the estimating individual thermoregulatory response such as metabolic heat production and skin vasodilation, the analysis of the TaTcore relationship could describe the character of the core temperature control. The present results show that the character of the system changes depending on time of day and feeding conditions.  相似文献   

5.
Body temperature (Tb) is a valuable parameter when assessing the physiological state of animals, but its widespread measurement is often constrained by methods that are invasive or require frequent recapture of animals. Alternatives based on automated remote sensing of peripheral Tb show promise, but little is known about their strengths and limitations. We measured peripheral Tb in great tits Parus major with subcutaneously implanted passive integrated transponders (PIT tags) and externally attached radio transmitters to determine repeatability of measurements, sensitivity of each method to variation in ambient temperature (Ta) and wind speed, the relationship between methods, and their ability to capture circadian variation in Tb. Repeatability of measurements by radio transmitters was high (> 80%) when readings were taken within 20 min, but reduced to 16% when measures were spaced 3.5 h apart. PIT tag data for the 3.5 h interval were more repeatable (33%) and less variable (cv). Data were affected by Ta with a stronger effect on the externally attached transmitters, but the influence of wind speed was small for both methods. There was a significant positive relationship between transmitter‐ and PIT tag temperature during both days and nights. Both methods were equally suited to detect diel changes in peripheral Tb. However, transmitters offered longer detection distance and better temporal resolution. These qualities should be considered when deciding how to collect Tb data remotely. If properly deployed, both methods allow measurement of peripheral Tb over a wide range of natural systems and conditions in small, free‐ranging, birds.  相似文献   

6.
We examined the relationship between body temperature (Tb) of free flying pigeons and ambient water vapor pressure and temperature. Core or near core Tb of pigeons were measured using thermistors inserted into the cloaca and connected to small transmitters mounted on the tail feathers of free flying tippler pigeons (Columba livia). Wet and dry bulb temperatures were measured using modified transmitters mounted onto free-flying pigeons. These allowed calculation of relative humidity and hence water vapor pressure at flight altitudes. Mean Tb during flight was 42.0 ± 1.3 °C (n = 16). Paired comparisons of a subset of this data indicated that average in-flight Tb increased significantly by 1.2 ± 0.7 °C (n = 7) over that of birds at rest (t = −4.22, P < 0.05, n = 7) within the first 15 min of takeoff. In addition, there was a small but significant increase in Tb with increasing ambient air (Ta) when individuals on replicate flights (n = 35) were considered. Inclusion of water vapor pressure into the regression model did not improve the correlation between body temperature and ambient conditions. Flight Tb also increased a small (0.5 °C) but significant amount (t = 2.827, P < 0.05, n = 8) from the beginning to the end of a flight. The small response of Tb to changing flight conditions presumably reflects the efficiency of convection as a heat loss mechanism during sustained regular flight. The increase in Tb on landing that occurred in some birds was a probable consequence of a sudden reduction in convective heat loss. Accepted: 2 February 1999  相似文献   

7.
Most mammals are known to have clear circadian rhythms of body temperature (Tb) and metabolic rate. Large parts of the rhythms correspond to the oscillation of nonshivering thermogenesis (NST), dependent on visceral organ mass, and, affected by mass of brown adipose tissue (BAT). I tested whether: (1) a different levels of BMR result in respective changes of Tb values and the magnitude of daily RMR oscillations both within and below thermoneutrality; (2) the amplitude of daily variation of RMR depends on ambient temperature (Ta). I studied: (1) daily variation of body temperature at Ta of 23 °C, and (2) the rate of resting metabolism (RMR) within and below thermoneutrality at the time of minimum and increasing Tb (minimum and maximum NST capacity), in two lines of laboratory mice subjected to divergent, artificial selection toward high (HBMR) and low (LBMR) basal rate of metabolism (BMR). All mice had a clear circadian rhythm of Tb with minimum of 36.4±0.2 °C at 7:00 and maximum of 37.8±0.2 °C at 21:00. Their RMR measured below thermoneutrality exhibited significant daily variation, with the maximum between 16:00 and 19:00, when Tb was rising. Within thermoneutral zone (TNZ) I found between-line, but not between-time, differences in RMR. All between-line differences in RMR could be explained by the magnitude of BMR. I did not find any between-line differences of RMR value in temperatures below thermoneutrality. The amplitude of daily variation of RMR measured below TNZ depended neither on the Ta value nor on level of BMR (or visceral organs).  相似文献   

8.
《Small Ruminant Research》2010,91(1-3):11-17
Isoelectric focusing (IEF) was applied for screening milk protein variants in milk samples from altogether 1078 sheep of different breeds, in detail Black Faced Mutton sheep (SKF; n = 57), East Friesian Milk sheep (OMS; n = 254), Gray Horned Heath (GGH; n = 190), Merinoland sheep (MLS; n = 363), Merino Mutton sheep (MMS; n = 88), and Rhön sheep (RHO; n = 126). Besides the known genetic variants of αs1-casein (CSN1S1) (A, C, D), αs2-casein (CSN1S2) (A, B), and β-lactoglobulin (LGB) (A, B, C) additional variants could be demonstrated in CSN1S1 (H, I) and CSN1S2 (C, D) and their genetic control confirmed by segregation analyses. CSN1S1*H corresponds to a previously mentioned phenotype “X” occurring in OMS, whereas CSN1S1*I was identified for the first time in GGH. CSN1S2*C appeared in OMS, GGH, MLS, and RHO in low frequencies and CSN1S2*D in MLS. Within LGB all three alleles occurred in Merino breeds while α-lactalbumin (LAA) and κ-CN (CSN3) were monomorph at protein level. The haplotype CSN1S1*CCSN1S2*A was predominant in five out of six breeds with frequencies between 0.325 and 0.919.  相似文献   

9.
Historically, studies of reptilian thermal biology have compared ambient temperatures (Ta) to body temperatures (Tb) from the animal under study, with Tb usually taken from the cloaca and various instruments being used to measure Tb. The advent of surgically implanted miniature temperature loggers has offered the opportunity to test the efficacy of cloacal Tb as a measurement in thermoregulatory studies. We expected that there was a difference between skin, cloacal, and core Tb's. Temperatures were measured from various positions on leopard tortoises (Stigmochelys pardalis) using thermocouples and miniature temperature loggers, including surgically implanted temperature loggers. Measurements of temperature from various positions on and in the tortoise were significantly different from Ta. Cloacal Tb's were significantly lower than all other body temperatures measured, and core Tb's were significantly different from cloacal Tb, skin and carapace temperatures. In addition, significant differences were found between measures of temperature from other parts of the body. The variations between core Tb, cloacal Tb and other measures of Tb indicated that there are large thermal gradients within the body of a relatively large tortoise at any given time with cloacal Tb not an accurate measure of core Tb.  相似文献   

10.
Precise measures of phenology are critical to understanding how animals organize their annual cycles and how individuals and populations respond to climate-induced changes in physical and ecological stressors. We show that patterns of core body temperature (T b) can be used to precisely determine the timing of key seasonal events including hibernation, mating and parturition, and immergence and emergence from the hibernacula in free-living arctic ground squirrels (Urocitellus parryii). Using temperature loggers that recorded T b every 20 min for up to 18 months, we monitored core T b from three females that subsequently gave birth in captivity and from 66 female and 57 male ground squirrels free-living in the northern foothills of the Brooks Range Alaska. In addition, dates of emergence from hibernation were visually confirmed for four free-living male squirrels. Average T b in captive females decreased by 0.5–1.0°C during gestation and abruptly increased by 1–1.5°C on the day of parturition. In free-living females, similar shifts in T b were observed in 78% (n = 9) of yearlings and 94% (n = 31) of adults; females without the shift are assumed not to have given birth. Three of four ground squirrels for which dates of emergence from hibernation were visually confirmed did not exhibit obvious diurnal rhythms in T b until they first emerged onto the surface when T b patterns became diurnal. In free-living males undergoing reproductive maturation, this pre-emergence euthermic interval averaged 20.4 days (n = 56). T b-loggers represent a cost-effective and logistically feasible method to precisely investigate the phenology of reproduction and hibernation in ground squirrels.  相似文献   

11.
Despite technological advances in thermal sensory equipment, few core temperature (TCORE) measurement techniques have met the established validity criteria in exercise science. Additionally, there is debate as to what method serves as the most practically viable, yet upholds the proposed measurement accuracy. This study assessed the accuracy of current and novel TCORE measurement techniques in comparison to rectal temperature (TREC) as a reference standard. Fifteen well-trained subjects (11 male, 4 female) completed 60 min of exercise at an intensity equating to the lactate threshold; measured via a discontinuous exercise test. TREC was significantly elevated from resting values (37.2±0.3 °C) at the end of moderate intensity exercise (39.6±0.04 °C; P=0.001). Intestinal telemetric pill (TPILL) temperature and temporal artery temperature (TTEM) did not differ significantly from TREC at rest or during exercise (P>0.05). However, aural canal temperature (TAUR) and thermal imaging temperature (TIMA) were both significantly lower than TREC (P<0.05). Bland Altman analysis revealed only TPILL was within acceptable limits of agreement (mean bias; 0.04 °C), while TTEM, TAUR and TIMA demonstrated mean bias values outside of the acceptable range (>0.27 °C). Against TREC, these results support the use of TPILL over all other techniques as a valid measure of TCORE at rest and during exercise induced hyperthermia. Novel findings illustrate that TIMA (when measured at the inner eye canthus) shows poor agreement to TREC during rest and exercise, which is similar to other ‘surface’ measures.  相似文献   

12.
We studied the temperature relations of wild and zoo Aldabra giant tortoises (Aldabrachelys gigantea) focusing on (1) the relationship between environmental temperature and tortoise activity patterns (n = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n = 4 wild and n = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8–31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer–regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.  相似文献   

13.

Body temperature (Tb), food intake and sleep cycle follows a circadian rhythm. Circadian variations of Tb may be influenced by changes in sleep time, late night consumption of high calorie diet and less physical activities. Deviations in any of these daily habits may alter the acrophase, mesor and amplitude of the cosinor curve of Tb. Changes in these confounding factors may also contribute to the body mass index (BMI) of the individual. This study was conducted on 29 high school going adolescents. We have employed an ideal cosinor model to study the changes in the 24 h cyclical changes in Tb (n = 12). Academic overload during examination days was seen in these high school going adults. Sleep duration and dietary habits were also studied in them to find out the relationship with BMI and circadian variations if any (n = 17). Higher BMI was observed in individuals having shorter sleep duration. BMI was high in students consuming high calorie diet at the time of the day when the body metabolism is normally low. A mathematical model exhibiting altered circadian rhythms is proposed that may be used to modify strategies to restore biorhythms for better health.

  相似文献   

14.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

15.
《Small Ruminant Research》2009,81(1-3):57-61
This study reports the status of the Booroola (FecB) and Galway (FecXG) mutations in Indian sheep breeds. The Kendrapada sheep (n = 46) was genotyped for the presence of FecB and FecXG mutations, while the Garole (n = 34), Malpura (n = 30), and Decanni sheep (n = 15) for the FecXG mutation. The FecB and FecXG genotyping was carried out by forced restriction fragment length polymorphism PCR technique. In the present study, FecB mutation was discovered in the Kendrapada sheep of Orissa, which is now the second prolific sheep of India after the Garole. Out of 46 individuals of Kendrapada sheep, 26 were homozygous (BB), 15 heterozygous (B+) and 5 non-carriers (++) for the FecB mutation. The frequency of the FecB allele in this sample was about 0.73. Results indicated that the frequency of the FecB mutation is high, but the gene is not fixed in the population as reported in Garole sheep. None of sheep breeds carried the FecXG mutation. The discovery of the FecB mutation in Kendrapada sheep will facilitate the use of FecB allele in improving the prolificacy of non-prolific sheep breeds of India.  相似文献   

16.
A technique was developed to monitor and describe the relationship between core body temperature (Tc) and rumen temperature (Trum) in cattle. This relationship was assessed in cattle subjected to varying environmental temperatures and subsequent variations in dry matter and water intake. Increasing the environmental wet bulb temperature (WBT) from ambient conditions (approximately 15 °C WBT) to mild heat stress conditions (25 °C WBT) caused an increase in both Tc and Trum with significant decreases in feed intake and increases in water consumption. Despite increases in both Tc and Trum, reductions in dry matter intake, and an increase in water consumption, the relationship between Tc and Trum did not change.  相似文献   

17.
Thermoregulation in Malayan sun bears is not fully understood. Therefore, in this study the effect of meteorological variables on both behavioural and autonomic thermoregulatory mechanisms in sun bears was examined in order to identify temperature thresholds for the activation of various thermoregulatory mechanisms. Infrared thermography was used to non‒invasively determine body surface temperature (TS) distribution in relation to ambient temperature (TA) and to determine the thermoneutral zone (TNZ) of sun bears. Thermographic measurements were performed on 10 adult sun bears at TA between 5 °C and 30 °C in three European zoos. To assess behaviours that contribute to thermoregulation, nine adult sun bears were observed at TA ranging from 5 °C to 34 °C by instantaneous scan sampling in 60 s intervals for a total of 787 h. Thermographic measurements revealed that the TNZ of sun bears lies between 24 °C and 28 °C and that heat is equally dissipated over the body surface. Behavioural data showed that behaviours related to thermoregulation occurred in advance of energetically costly autonomic mechanisms, and were highly correlated with TA and solar radiation. While the temperature threshold for the onset of thermoregulatory behaviours below the TNZ lies around 15 °C, which is well below the lower critical temperature (TLC) assessed by thermography, the onset for behaviours to prevent overheating occurred at 28 °C, which was closer to the estimated upper critical temperature (TUC) of sun bears. These findings provide useful data on the thermal requirements of sun bears with respect to the species potential to cope with the effects of climate change and deforestation which are occurring in their natural range. Furthermore, these results may have important implications for the care and welfare of bears in captivity and should be taken into consideration, when designing and managing facilities.  相似文献   

18.
Remote measurements of body temperature (Tb) in animals require implantation of relatively large temperature-sensitive radio-transmitters or data loggers, whereas rectal temperature (Trec) measurements require handling and therefore may bias the results. We investigated whether ∼0.1 g temperature-sensitive subcutaneously implanted transponders can be reliably used to quantify thermal biology and torpor use in small mammals. We examined (i) the precision of transponder readings as a function of temperature and (ii) whether subcutaneous transponders can be used to remotely record subcutaneous temperature (Tsub). Five adult male dunnarts (Sminthopsis macroura, body mass 24 g) were implanted with subcutaneous transponders to determine Tsub as a function of time and ambient temperature (Ta), and in comparison to thermocouple readings of Trec. Transponder temperature was highly correlated with water bath temperature (r2=0.96–0.99) over a range of approximately 10.0–40.0 °C. Transponders provided reliable data (±0.6 °C) over the Tsub of 21.4–36.9 °C and could be read from a distance of up to 5 cm. Below 21.4 °C, accuracy was reduced to ±2.8 °C, but individual transponder accuracy varied. Consequently, small subcutaneous transponders are useful to remotely quantify thermal physiology and torpor patterns without having to disturb the animal and disrupt torpor. Even at Tsub<21.4 °C where the accuracy of the temperature readings was reduced, transponders do provide reliable data on whether and when torpor is used.  相似文献   

19.
We study regulatory networks of N genes giving rise to a vector expression profile v(t) in which each gene is Boolean; either on or off at any time. We require a network to produce a particular time sequence v(t) for t∈1,…,T and parameterize the complexity of such a genetic function by its duration T. We establish a number of new results regarding how functional complexity constrains genetic regulatory networks and their evolution. We find that the number of networks which generate a function decreases approximately exponentially with its complexity T and show there is a corresponding weakening of the robustness of those networks to mutations. These results suggest a limit on the functional complexity T of typical networks that is polynomial in N. However, we are also able to prove the existence of a, presumably small, class of networks in which this scales exponentially with N. We demonstrate that an increase in functional complexity T drives what we describe as a metagraph disintegration effect, breaking up the space of networks previously connected by neutral mutations and contrast this with what is found with less restrictive definitions of functionality. Our findings show how functional complexity could be a factor in shaping the evolutionary landscape and how the evolutionary history of a species constrains its future functionality. Finally we extend our analysis to functions with more exotic topologies in expression space, including “stars” and “trees”. We quantify how the properties of networks that give rise to these functions differ from those that produce linear functional paths with the same overall duration T.  相似文献   

20.
Global warming increasingly challenges thermoregulation in endothermic animals, particularly in hot and dry environments where low water availability and high temperature increase the risk of hyperthermia. In birds, un-feathered body parts such as the head and bill work as ‘thermal windows’, because heat flux is higher compared to more insulated body regions. We studied how such structures were used in different thermal environments, and if heat flux properties change with time in a given temperature. We acclimated zebra finches (Taeniopygia guttata) to two different ambient temperatures, ‘cold’ (5 °C) and ‘hot’ (35 °C), and measured the response in core body temperature using a thermometer, and head surface temperature using thermal imaging. Birds in the hot treatment had 10.3 °C higher head temperature than those in the cold treatment. Thermal acclimation also resulted in heat storage in the hot group: core body temperature was 1.1 °C higher in the 35 °C group compared to the 5 °C group. Hence, the thermal gradient from core to shell was 9.03 °C smaller in the hot treatment. Dry heat transfer rate from the head was significantly lower in the hot compared to the cold treatment after four weeks of thermal acclimation. This reflects constraints on changes to peripheral circulation and maximum body temperature. Heat dissipation capacity from the head region increased with acclimation time in the hot treatment, perhaps because angiogenesis was required to reach peak heat transfer rate. We have shown that zebra finches meet high environmental temperature by heat storage, which saves water and energy, and by peripheral vasodilation in the head, which facilitates dry heat loss. These responses will not exclude the need for evaporative cooling, but will lessen the amount of energy expend on body temperature reduction in hot environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号