首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Organic–inorganic hybrid perovskite solar cells (PSC) are promising third‐generation solar cells. They exhibit good power conversion efficiencies and in principle they can be fabricated with lower energy consumption than many more established technologies. To improve the efficiency and long‐term stability of PSC, organic molecules are frequently used as “interlayers.” Interlayers are thin layers or monolayers of organic molecules that modify a specific interface in the solar cell. Here, the latest progress in the use of interlayers to optimize the performance of PSC is reviewed. Where appropriate interesting examples from the field of organic photovoltaics (OPV) are also presented as there are many similarities in the types of interlayers that are used in PSC and OPV. The review is organized into three parts. The first part focuses on why organic molecule interlayers improve the performance of the solar cells. The second section discusses commonly used molecular interlayers. In the last part, different approaches to make thin and uniform interlayers are discussed.  相似文献   

2.
Using bromoantimonate (V) (N‐EtPy)[SbBr6] as an example, it is demonstrated that ABX6 compounds can form perovskite‐like 3D crystalline frameworks with short interhalide contacts, enabling advanced optoelectronic characteristics of these materials. The designed compound shows an impressive performance in planar junction solar cells delivering external quantum efficiency of ≈80% and power conversion efficiency of ≈4%, thus being comparable with the conventional perovskite material MAPbBr3. The discovery of the first perovskite‐like compound ABX6 exhibiting good photovoltaic performance opens wide opportunities for rational design of novel perovskite‐like semiconductor materials for advanced electronic and photovoltaic applications.  相似文献   

3.
The halide perovskite (PVSK) materials (with ABX3 formulation) have emerged as “dream materials” for photovoltaic (PV) applications due to their remarkable physical properties such as high optical absorption coefficient, carrier mobility, long carrier diffusion lengths, etc. These properties have enabled the PV devices to reach higher than 20% power conversion efficiencies (PCE) in record time. The further pursuit of higher PCE and improved stability brings forth increasing interests in so‐called “mixed composition” PVSK materials, consisting of partial substitution of the A, B, and/or X‐sites with alternative elements/molecules of similar size. Herein, we highlight the recent advances in developing mixed PVSK for PVs and their relevant optoelectronic properties. We mainly focus on mixed PVSK materials in the form of polycrystalline thin films, but also discuss nanostructured and two‐dimensional (2D) PVSK materials due to the increasing interest of broad readership. Efforts are exerted to elucidate the design principles of mixed PVSK and fabrication techniques for high performance optoelectronic devices, which help deepen our fundamental understanding of mixed PVSK systems. We hope this review will shed light onto the design and synthesis of mixed PVSK materials to further the progress of PVSK photovoltaics towards higher efficiencies and longer lifetimes.  相似文献   

4.
Understanding the morphology of polymer‐based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low‐bandgap silole‐containing conjugated polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b;2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (PSBTBT) with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the “As‐Spun”, “Pre‐Annealed”, and “Post‐Annealed” films were studied by scanning force microscopy, contact angle measurements, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the “As‐Spun” films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing‐incidence X‐ray diffraction and small‐angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains ~10 nm in size, leading to an improvement in photovoltaic performance.  相似文献   

5.
Cascade heterojunction (CHJ) organic solar cells have recently emerged as an alternative to conventional bulk heterojunctions and series‐connected tandems due to their significant promise for high internal quantum efficiency (IQE) and broad spectral coverage. However, CHJ devices thus far have also exhibited poor fill factor (FF), resulting in minimal enhancements (or even decreases) in power conversion efficiency (PCE) when compared with single heterojunction (SHJ) cells. In this study, the major variables controlling the CHJ maximum power point and FF are determined using a combinatorial approach. By matching the maximum power point voltage (VMPP) of the constituent parallel‐connected heterojunctions (subjunctions) and minimizing the injection barriers intrinsic to CHJs, high FF and PCE can be achieved. Optimized CHJ devices are demonstrated with >99% IQE in the interlayer and a 46% increase in PCE compared to a SHJ reference (4.1% versus 2.8%). Devices with a transparent exciton dissociation layer (EDL)/interlayer/acceptor structure are employed, such that each CHJ has absorption efficiency identical to its interlayer/acceptor SHJ counterpart. Using these results, a clear map of performance as a function of material parameters is developed, providing straightforward, universal design rules to guide future engineering of molecules and layer architectures for CHJ organic photovoltaic devices.  相似文献   

6.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

7.
Dye‐sensitized solar cells (DSCs) have attracted great interest as one of the most promising photovoltaic technologies, and transparent DSCs show potential applications as photovoltaic windows. However, the competition between light absorption for photocurrent generation and light transmittance for obtaining high transparency limits the performance of transparent DSCs. Here, transparent DSCs exhibiting a high light transmittance of 60.3% and high energy conversion efficiency (3.66%) are reported. The strategy is to create a cocktail system composed of ultraviolet and near‐infrared dye sensitizers that selectively and efficiently harvest light in the invisible or low‐eye‐sensitivity region while transmitting light in high‐eye‐sensitivity regions. This new design provides a reasonable approach for realizing high efficiency and transparency DSCs that have potential applications as photovoltaic windows.  相似文献   

8.
Perovskite solar cells (PSCs) are now at the forefront of the state‐of‐the‐art photovoltaic technologies due to their high efficiency and low fabrication costs. To further realize the potential of this fascinating class of solar cells, nanostructured functional materials have been playing important roles. 2D layered materials have attracted a great deal of interest due to their fascinating properties and unique structure. Recently, the exploration of a wide range of novel 2D materials for use in PSCs has seen considerable progress, but still a lot remains to be done in this field. In this progress report, the advancements that have recently been made in the application of these emerging 2D materials, beyond graphene, for PSCs are presented. Both the advantages and challenges of these 2D materials for PSCs are highlighted. Finally, important directions for the future advancements toward efficient, low‐cost, and stable PSCs are outlined.  相似文献   

9.
The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a “green” technology, and properly planning for recycling will offer the opportunity to make it a “double‐green” technology—that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value‐added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin‐film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current‐PV and future‐PV technologies.  相似文献   

10.
In consideration of the unique advantages of new non‐fullerene acceptors and the tandem‐junction structure, organic photovoltaics (OPVs) based on them are very promising. Studies related to this emerging area began in 2016 with achieved power conversion efficiencies (PCEs) of 8–10%, which have now been boosted to 17%. In this essay, the construction of high‐performance OPVs is discussed, with a focus on combining the advantages of new non‐fullerene acceptors and the tandem‐junction structure. In order to achieve higher PCEs, methods to enable high short‐circuit current density, open‐circuit voltage, and fill factor are discussed. In addition, the stability and reproducibility of high‐efficiency OPVs are also addressed. Herein, it is forecast that the new non‐fullerene acceptors‐based tandem‐junction OPVs will become the next big wave in the field and achieve high PCEs over 20% in the near future. Some promising research directions on this emerging hot topic are proposed which may further push the field into the 25% high efficiency era and considerably advance the technology beyond laboratory research.  相似文献   

11.
Hybrid Perovskite (HP) semiconductors have been skyrocketing the field of new generation photovoltaics and expanding into advanced optoelectronics. Perovskite photovoltaics (PV) can give a tremendous push to the green energy transition, which calls for efficient, low cost, but also environmentally friendly solutions. Halide perovskites present a serious drawback related to the presence of toxic materials, i.e., lead, with its associated health and environment concerns. These concerns severely hamper their commercialization. So far, only a few viable alternatives to Pb have been found, which lag behind in terms of power conversion efficiency. Here, a forward‐looking perspective is developed presenting different potential strategies to overcome the environmental and health issues related to the use and release of lead for operative HP solar cells. The possible lead‐leakage paths and related “remediation” tools are reviewed, and possible strategies are collated with a view to beginning a new era of lead containing HP devices. Finally, through a comparison with existing lead‐based technology, a comparative study is presented to provide the tools that are essential for a real evaluation of the impact of lead content on HP commercialization.  相似文献   

12.
Aqueous‐solution‐processed solar cells (ASCs) are promising candidates of the next‐generation large‐area, low‐cost, and flexible photovoltaic conversion equipment because of their unique environmental friendly property. Aqueous‐solution‐processed polymer/nanocrystals (NCs) hybrid solar cells (AHSCs) can effectively integrate the advantages of the polymer (e.g., flexibility and lightweight) and the inorganic NCs (e.g., high mobility and broad absorption), and therefore be considered as an ideal system to further improve the performance of ASCs. In this work, double‐side bulk heterojunction (BHJ), in which one BHJ combines the active material with electron transport material and the other combines the active material with hole transport material, is developed in the AHSCs. Through comparing with the single‐side BHJ device, promoted carrier extraction, enhanced internal quantum efficiency, extended width of the depletion region, and prolonged carrier lifetime are achieved in double‐side BHJ devices. As a result, power conversion efficiency exceeding 6% is obtained, which breaks the bottleneck efficiency around ≈5.5%. This work demonstrates a device architecture which is more remarkable compared with the traditional only donor–acceptor blended BHJ. Under conservative estimation, it provides instructive architecture not only in the ASCs, but also in the organic solar cells (SCs), quantum dot SCs, and perovskite SCs.  相似文献   

13.
Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.  相似文献   

14.
Lead halide perovskites have recently emerged as promising absorbers for fabricating low‐cost and high‐efficiency thin‐film solar cells. The record power conversion efficiency of lead halide perovskite‐based solar cells has rapidly increased from 3.8% in 2009 to 22.1% in early 2016. Such rapid improvement is attributed to the superior and unique photovoltaic properties of lead halide perovskites, such as the extremely high optical absorption coefficients and super‐long photogenerated carrier lifetimes and diffusion lengths that are not seen in any other polycrystalline thin‐film solar cell materials. In the past a few years, theoretical approaches have been extensively applied to understand the fundamental mechanisms responsible for the superior photovoltaic properties of lead halide perovskites and have gained significant insights. This review article highlights the important theoretical results reported in literature for the understanding of the unique structural, electronic, optical, and defect properties of lead halide perovskite materials. For comparison, we also review the theoretical results reported in literature for some lead‐free perovskites, double perovskites, and nonperovskites.  相似文献   

15.
Perovskite solar cells (PSC) have shown that under laboratory conditions they can compete with established photovoltaic technologies. However, controlled laboratory measurements usually performed do not fully resemble operational conditions and field testing outdoors, with day‐night cycles, changing irradiance and temperature. In this contribution, the performance of PSCs in the rooftop field test, exposed to real weather conditions is evaluated. The 1 cm2 single‐junction devices, with an initial average power conversion efficiency of 18.5% are tracked outdoors in maximum power point over several weeks. In parallel, irradiance and air temperature are recorded, allowing us to correlate outside factors with generated power. To get more insight into outdoor device performance, a comprehensive set of laboratory measurements under different light intensities (10% to 120% of AM1.5) and temperatures is performed. From these results, a low power temperature coefficient of ?0.17% K?1 is extracted in the temperature range between 25 and 85 °C. By incorporating these temperature‐ and light‐dependent PV parameters into the energy yield model, it is possible to correctly predict the generated energy of the devices, thus validating the energy yield model. In addition, degradation of the tested devices can be tracked precisely from the difference between measured and modelled power.  相似文献   

16.
Organic solar cells based on ternary active layers can lead to higher power conversion efficiencies than corresponding binaries, and improved stability. The parameter space for optimization of multicomponent systems is considerably more complex than that of binaries, due to both, a larger number of parameters (e.g., two relative compositions rather than one) and intricate morphology–property correlations. Most experimental reports to date reasonably limit themselves to a relatively narrow subset of compositions (e.g., the 1:1 donor/s:acceptor/s trajectory). This work advances a methodology that allows exploration of a large fraction of the ternary phase space employing only a few (<10) samples. Each sample is produced by a designed sequential deposition of the constituent inks, and results in compositions gradients with ≈5000 points/sample that cover about 15%–25% of the phase space. These effective ternary libraries are then colocally imaged by a combination of photovoltaic techniques (laser and white light photocurrent maps) and spectroscopic techniques (Raman, photoluminescence, absorption). The generality of the methodology is demonstrated by investigating three ternary systems, namely PBDB‐T:ITIC:PC70BM, PTB7‐Th:ITIC:PC70BM, and P3HT:O‐IDFBR:O‐IDTBR. Complex performance‐structure landscapes through the ternary diagram as well as the emergence of several performance maxima are discovered.  相似文献   

17.
The synthesis and optimization of new photovoltaic donor polymers is a time‐consuming process. Computer‐based molecular simulations can narrow the scope of materials choice to the most promising ones, by identifying materials with desirable energy levels and absorption energies. In this paper, such a retrospective analysis is presented of a series of fused aromatic push–pull copolymers. It is demonstrated that molecular calculations do indeed provide good estimates of the absorption energies measured by UV–vis spectroscopy and of the ionization potentials measured by photoelectron spectroscopy in air. Comparing measured photovoltaic performance of the polymer series to the trend in efficiencies predicted by computation confirms the validity of this approach.  相似文献   

18.
In organic photovoltaic (PV) cells, the well‐established donor‐acceptor (D/A) concept enabling photo‐induced charge transfer between two partners with suitable energy level alignment has proven extremely successful. Nevertheless, the introduction of such a heterojunction is accompanied with additional energy losses as compared to an inorganic homojunction cell, owing to the presence of a charge‐transfer (CT) state at the D/A interface. Based on the principle of detailed balance, a modified Shockley‐Queisser theory is developed including the essential effects of interfacial CT states, that allows for a quantitative assessment of the thermodynamic efficiency limits of molecular D/A solar cells. Key parameters, apart from the optical gap of the absorber material, entering the model are the energy (ECT) and relative absorption strength (αCT) of the CT state. It is demonstrated how the open‐circuit voltage (VOC) and thus the power conversion efficiency are affected by different parameter values. Furthermore, it is shown that temperature dependent device characteristics can serve to determine the CT energy, and thus the upper limit of VOC for a given D/A combination, as well as to quantify non‐radiative recombination losses. The model is applied to diindenoperylene (DIP)‐based photovoltaic devices, with open‐circuit voltages between 0.9 and 1.4 V, depending on the partner, that have recently been reported.  相似文献   

19.
Luminescent solar concentrators (LSCs) are optical systems that absorb, convert, and concentrate solar light by means of photoluminescence of an emitting material embedded in a transparent waveguide. LSCs combine large possibilities of variation of shape, flexibility, color, and transparency and can operate under direct or diffuse light. LSCs were actively investigated in the period 1975–1985 in view of photovoltaic (PV) conversion. After 20 years of sleep, research on LSCs has reemerged in the first years of the millennium driven by their potential application for PV conversion in built environment. Research on LSCs aims at the development of new active and passive components, namely emitting and light‐guiding materials, and at the reduction of the loss factors associated with the elemental processed involved in the operation in order to improve power conversion efficiency. After a brief historical account, the operating principles, characterization, components, technology, and applications are reviewed. Finally, the performance of LSCs are critically discussed in a global perspective with particular emphasis on the basic contradiction between light concentration and conversion efficiency leading to some suggestions for future development of the topic.  相似文献   

20.
Tandem solar cells are the next step in the photovoltaic (PV) evolution due to their higher power conversion efficiency (PCE) potential than currently dominating, but inherently limited, single‐junction solar cells. With the emergence of metal halide perovskite absorber materials, the fabrication of highly efficient tandem solar cells, at a reasonable cost, can significantly impact the future PV landscape. The perovskite‐based tandem solar cells have already shown that they can convert light more efficiently than their standalone sub‐cells. However, to reach PCEs over 30%, several challenges have to be overcome and the understanding of this fascinating technology has to be broadened. In this review, the main scientific and engineering challenges in the field are presented, alongside a discussion of the current status of three main perovskite tandem technologies: perovskite/silicon, perovskite/CIGS, and perovskite/perovskite tandem solar cells. A summary of the advanced structural, electrical, optical, radiative, and electronic characterization methods as well as simulations being utilized for perovskite‐based tandem solar cells is presented. The main findings are summarized and the strength of the techniques to overcome the challenges and gain deeper knowledge for further performance improvement is assessed. Finally, the PCE potential in different experimental and theoretical limits is compared with an aim to shed light on the path towards overcoming the 30% efficiency threshold for all of the three herein reviewed tandem technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号