首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastric cancer (GC) is the fifth most common tumor and the third most deadly cancer worldwide. N6-methyladenosine (m6A) modification has been reported to play a regulatory role in human cancers. However, the exact role of m6A in GC remains largely unknown, and the dysregulation of m6A on mitochondrial metabolism has never been studied. In the present study, we demonstrated that FTO, a key demethylase for RNA m6A modification, was up-regulated in GC tissues, especially in tissues with liver metastasis. Functionally, FTO acted as a promoter for the proliferation and metastasis in GC. Moreover, FTO enhanced the degradation of caveolin-1 mRNA via its demethylation, which regulated the mitochondrial fission/fusion and metabolism. Collectively, our current findings provided some valuable insights into FTO-mediated m6A demethylation modification and could be used as a new strategy for more careful surveillance and aggressive therapeutic intervention.Subject terms: Cancer genomics, Gastrointestinal diseases  相似文献   

2.
Despite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.Subject terms: Mechanisms of disease, RNA modification  相似文献   

3.
  相似文献   

4.
Macrophages exhibit diverse functions within various tissues during the inflammatory response, and the physical properties of tissues also modulate the characteristics of macrophages. However, the underlying N6-methyladenosine (m6A)-associated molecular mechanisms remain unclear. Accordingly, we examined the potential role of m6A in macrophage activation and stiffness sensing. Intriguingly, we found that the macrophage inflammatory response and global levels of m6A were stiffness-dependent and that this was due to mechanically loosening the chromatin and epigenetic modification (H3K36me2 and HDAC3). In addition, we targeted suppressor of cytokine signalling 1 (Socs1) m6A methylation in a stiffness-dependent manner by screening the sequencing data and found that a higher stiffness hydrogel activated Jak-STAT and NFκB signalling and suppressed Fto gene expression. Next, by using the CRISPR/Cas9 system to knockout the FTO gene in macrophages, we demonstrated that FTO affects the stiffness-controlled macrophage inflammatory response by sustaining the negative feedback generated by SOCS1. Finally, we determined that the m6A reader YTHDF1 binds Socs1 mRNA and thereby maintains expression of SOCS1. Our results suggest that the FTO/Socs1/YTHDF1 regulatory axis is vital to the stiffness-controlled macrophage inflammatory response and that the deletion of FTO affects the negative feedback control exerted by SOCS1. Our findings increase understanding of the regulatory mechanisms involved in macrophage activation and the control of inflammation.  相似文献   

5.
Jia G  Fu Y  Zhao X  Dai Q  Zheng G  Yang Y  Yi C  Lindahl T  Pan T  Yang YG  He C 《Nature chemical biology》2011,7(12):885-887
We report here that fat mass and obesity-associated protein (FTO) has efficient oxidative demethylation activity targeting the abundant N6-methyladenosine (m(6)A) residues in RNA in vitro. FTO knockdown with siRNA led to increased amounts of m(6)A in mRNA, whereas overexpression of FTO resulted in decreased amounts of m(6)A in human cells. We further show the partial colocalization of FTO with nuclear speckles, which supports the notion that m(6)A in nuclear RNA is a major physiological substrate of FTO.  相似文献   

6.
The mRNA modification N6-methyladenosine(m6A)plays vital roles in plant development and biotic and abiotic stress responses.The RNA m6A demethylase ALKBH9 B can remove m6A in alfalfa mosaic virus RNA and plays roles in alfalfa mosaic virus infection in Arabidopsis.However,it is unknown whether ALKBH9 B also exhibits demethylation activity and has a biological role in endogenous plant mRNA.We demonstrated here that mRNA m6A modification is in...  相似文献   

7.
8.
Previous studies have reported that the N6-methyladenosine demethylase ALKBH5 can regulate adipogenesis in humans.However,its function in birds remains unclear....  相似文献   

9.
10.
11.
Renal ischemia-reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI), which is closely related to high morbidity and mortality. However, the pathogenesis underlying renal IRI is complex and not fully defined. N6-methyladenosine (m6A) was recently found to be an abundant modification in mammalian messenger RNAs. It is implicated in various biological processes, while the role of m6A in IRI is not illustrated. Here we show that the m6A-methylated RNA level and its methyltransferase METTL14 are elevated in human AKI renal tissues and IRI HK-2 cells. Moreover, METTL14 knockdown protects the kidney against IRI in vitro and in vivo. Mechanistically, we identified that YAP1 is a direct target of METTL14 in AKI progression. Inhibition of YAP1-TEAD signaling by peptide 17 abrogates the protective effect of METTL14 against IRI in vitro and in vivo. Taken together, these results reveal that the N6-methyladenosine mRNA methylase METTL14 promotes the renal IRI via suppressing YAP1. The discovery of the METTL14-YAP1 pathway provides an important new perspective for understanding AKI and is conducive to revealing new therapeutic strategies and targets.  相似文献   

12.
13.
《Developmental cell》2022,57(2):246-259.e4
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

14.
Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance. To better understand how adipocytes regulate WAT inflammation, the present study generated chimeric mice in which inducible 6-phosphofructo-2-kinase was low, normal, or high in WAT while the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) was normal in hematopoietic cells, and analyzed changes in high-fat diet (HFD)-induced WAT inflammation and systemic insulin resistance in the mice. Indicated by proinflammatory signaling and cytokine expression, the severity of HFD-induced WAT inflammation in WT → Pfkfb3+/– mice, whose Pfkfb3 was disrupted in WAT adipocytes but not hematopoietic cells, was comparable with that in WT → WT mice, whose Pfkfb3 was normal in all cells. In contrast, the severity of HFD-induced WAT inflammation in WT → Adi-Tg mice, whose Pfkfb3 was over-expressed in WAT adipocytes but not hematopoietic cells, remained much lower than that in WT → WT mice. Additionally, HFD-induced insulin resistance was correlated with the status of WAT inflammation and comparable between WT → Pfkfb3+/– mice and WT → WT mice, but was significantly lower in WT → Adi-Tg mice than in WT → WT mice. In vitro, palmitoleate decreased macrophage phosphorylation states of Jnk p46 and Nfkb p65 and potentiated the effect of interleukin 4 on suppressing macrophage proinflammatory activation. Taken together, these results suggest that the Pfkfb3 in adipocytes functions to suppress WAT inflammation. Moreover, the role played by adipocyte Pfkfb3 is attributable to, at least in part, palmitoleate promotion of macrophage anti-inflammatory activation.  相似文献   

15.
16.
17.
李语丽于军  宋述慧 《遗传》2013,35(12):1340-1351
RNA酶促共价修饰研究, 尤其是m6A(6-甲基腺嘌呤), 是RNA生物学研究的一个新兴领域。m6A是真核生物mRNA内部序列中最常见的一种转录后修饰形式, 由包含3个独立组分的复合物mRNA: m6A甲基转移酶催化生成。最新研究发现肥胖相关蛋白FTO可以脱掉m6A上的甲基, 表明该甲基化过程是可逆的。抑制或敲除m6A甲基转移酶会引起重要的表型变化, 但是由于过去的检测方法受限, m6A确切的作用机制目前为止还不甚清楚。二代测序技术结合免疫沉淀方法为大规模检测m6A修饰并研究其作用机制提供了可能。文章主要综述了m6A的发现史、生成机制、组织和基因组分布、检测方法、生物学功能等及其最新研究进展, 并通过比较3种IP-seq技术和数据分析的异同及优缺点, 对m6A这种RNA表观修饰研究中尚未解决的问题进行了讨论。  相似文献   

18.
《Molecular cell》2021,81(20):4209-4227.e12
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号