首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Flight activity was compared in colonies of Russian honey bees, Apis mellifera L. (Hymenoptera: Apidae), and Italian bees during commercial pollination of lowbush blueberries (principally Vaccinium angustifolium Aiton) in Washington Co., ME, in late May and early June in 2003 and 2004. Colonies of the two stocks were managed equally in Louisiana during autumn through early spring preceding observations in late spring each year. Resulting average populations of adult bees and of brood were similar in colonies of the two bee stocks during pollination. Flight during pollination was monitored hourly on 6 d each year by counting bees exiting each colony per minute; counts were made manually with flight cones on 17 colonies per stock in 2003 and electronically with ApiSCAN-Plus counters on 20 colonies per stock in 2004. Analysis of variance showed that temperature, colony size (population of adult bees or brood), and the interaction of these effects were the strongest regulators of flight activity in both years. Russian and Italian bees had similar flight activity at any given colony size, temperature, or time of day. Flight increased linearly with rising temperatures and larger colony sizes. Larger colonies, however, were more responsive than smaller colonies across the range of temperatures measured. In 2003, flight responses to varying temperatures were less in the afternoon and evening (1500-1959 hours) than they were earlier in the day. Russian colonies had flight activity that was suitable for late spring pollination of lowbush blueberries.  相似文献   

2.
Foraging honey bees frequently leave the hive to gather pollen and nectar for the colony. This period of their lives is marked by periodic extremes of body temperature, metabolic expenditure, and flight muscle activity. Following ecologically relevant episodes of hyperthermia between 33°C and 50°C, heat shock protein 70 (Hsp70) expression and hsp70/hsc70-4 activity in brains of nonflying laboratory-held bees increased by only two to three times baseline at temperatures 46–50°C. Induction was undetectable in thoracic–flight muscles. Yet, thorax hsp70 mRNA (but not hsc70-4 mRNA) levels were up to ten times higher in flight-capable hive bees and foraging bees compared to 1-day-old, flight-incapable bees, while brain hsp70/hsc70-4 mRNA levels were low and varied little among behavioral groups. These data suggest honey bee tissues, especially flight muscles, are extremely thermotolerant. Furthermore, Hsp70 expression in the thoraces of flight-capable bees is probably flight-induced by oxidative and mechanical damage to flight muscle proteins rather than temperature.  相似文献   

3.
Differences in flight activity and in the percentages of pollen foragers between commercially managed honey bees, Apis mellifera L. (Hymenoptera: Apidae), of two stocks (USDA-ARS Russian, n = 41 colonies; and Italian, n = 43 colonies) were evaluated in an almond, Prunus dulcis (Miller) D. A. Webb, orchard in Kern Co., CA, during February and March 2002. Flight activity was measured by taking 1-min counts of bees exiting colonies on each of 9 d. Flight activity was best predicted with a model containing the effects of colony size (populations of adult bees and sealed brood), temperature, time of day, the interaction of adult bee population with temperature, and the interaction of adult bee population with time of day. Flight increased linearly with adult bee and brood population, had a quadratic relationship with temperature (increasing, but less so at higher temperatures), and had a quadratic relationship with time of day (decreasing, but less so at later times). Larger colonies had more response to changing temperatures and less response to different times of day than small colonies. Bee type had no direct influence on flight activity at any given colony size, temperature, or time of observation or when evaluated using a reduced data set retaining 34 Italian colonies and 32 Russian colonies whose mean sizes were equal. Overall, however, Russian colonies were less populous by about one-fourth and so fielded on average 71% of the foragers that Italian colonies did. Pollen collection was measured by capturing returning foragers on 4 d. The percentages of foragers with pollen were not different for the bee types.  相似文献   

4.
Flight activity of Melipona bicolor bicolor, coming from Cunha (23o05'S, 44o55'W), Atlantic Forest, was studied in ten colonies, and in two periods: from July to September 1993 and from August to September 1995. The colonies were grouped in weak, medium and strong, according to the diameter of the combs, which can provide a good idea of the number of cells built. 855 observations were accomplished for 5 minutes, every half-hour, from 8 to 18 hours. The total number of bees that entered and left the hive and the number of bees that arrived with mud, pollen and resin, besides the number that went out with debris in that period were counted. It was also registered the temperature and the relative humidity of the air. The total external activity, as well as pollen collection, was maximum in the first hours of the morning, mainly in strong colonies. Weak colonies moved their maximum activity approximately to 12 hours. Pollen collection declined gradually, while mud and resin collection rose; removal of debris was greater in the beginning of the morning and in the end of the afternoon. Flight activity increased as relative humidity of the air rose, being optimum for strong colonies in the range between 80%-89%, and for the weakest colonies between 70%-79%. The minimum temperature observed for exit of the bees was 11oC, with optimum temperatures ranging between 17oC and 22oC. The results showed that the general state of the colony influences the different strategies of food collection and that these bees should be adapted to environments of high relative humidity as the Atlantic forest.  相似文献   

5.
By means of infrared thermography and without disturbing social interactions, the correlation between thoracic temperature in honeybees, Apis mellifera carnica, upon their return to the hive and their foraging distance was investigated. Thoracic temperature while dancing and walking and during trophallactic contact with hive bees decreased with increasing flight distance. In bees foraging 0.5, 1, 1.5 and 2 molar sucrose solutions from a distance of 120 m, dancing temperature amounted to 38.4, 40.1, 40.9 and 40.6 °C, respectively; while in bees foraging from a distance of 2950 m it amounted to 36.6, 38.4, 38.6 and 39.1 °C, respectively. The rate of decrease in dancing temperature per 1000 m increase in flight distance was 0.64, 0.47, 0.81 and 0.54 °C with a 0.5, 1, 1.5 and 2 molar sucrose solution, respectively. Both at short and at long flight distances, the relationship between thoracic temperature and sucrose concentration of the food followed a non-linear curve, which flattened at concentrations higher than 1 mol/1. The experiments showed that inside the hive the foragers' level of thermoregulation depends not only on the energy (sugar) content of the food; but rather, the level of thermoregulation corresponds to the general quality of the food source, which includes both energy content and distance from the hive. Because the thermal behaviour of foragers correlates with several behavioural parameters indicating the bees' foraging tendency and their eagerness to dance, thoracic temperature seems to be a correlate of the profitability of foraging.  相似文献   

6.
Trehalose levels in the thoraces of honey bees did not change significantly during the first 2–4 min of flight. This effect was seen both for bees flown shortly after removal from the hive and for bees which were flown after a 2 hr starvation period. There was also no detectable activation of the trehalose in isolated mitochondria from bees flown for periods of up to 2 min. However, the glucose content of the thoraces of bees flown shortly after removal from the hive dropped dramatically during the first 15 sec of flight. There was no evidence of a transient increase in the glucose content in the thorax at any of the times studied as would be expected if trehalose were hydrolized. The drop in glucose content at early times of flight was not detected if the bees were starved for 2 hr before flight was started. The changes in fructose content of the thoraces with time were similar to those observed for glucose, but were not statistically significant due to variation among individual bees. The sucrose content of bee thoraces varied greatly and no meaningful conclusions could be reached about how it changed as a function of time of flight.  相似文献   

7.
Age-related division of labor in honey bees is associated with plasticity in circadian rhythms. Forager bees that are typically older than 3 weeks of age show strong behavioral and molecular circadian rhythms with higher activity during the day. Younger bees that typically care for ("nurse") the brood are active around the clock with similar brain clock gene levels throughout the day. However, nurses that are caged on brood-less combs inside or outside the hive show robust circadian rhythms with higher activity during the day, suggesting that direct contact with the brood mediates the plasticity in the circadian system. The nature of the brood signals affecting the workers' circadian system and the modalities by which they are detected are unknown. Given that the antennae are pivotal sensory organs in bees, we hypothesized that they are involved in mediating the brood influence on the plasticity in circadian rhythms. The flagella of the antennae are densely covered with diverse sensory structures able to detect a wide range of signals. To test our hypothesis, we removed the flagella of nurses and observed their behavior in isolation and in free-foraging colonies. We found that individually-isolated flagella-less bees under constant laboratory conditions show robust circadian rhythms in locomotor activity. In observation hives, flagella-less bees cared for the brood, but were more active during the day. By contrast, sham-treated bees were active around the clock as typical of nurses. Detailed video recordings showed that the brood-tending behavior of flagella-less and sham-treated bees is similar. These observations suggest that the difference in the patterns of brood care activity is not because the flagella-less bees did not contact the brood. Our results suggest that nurses are able to find the brood in the dark environment of the hive without their flagella, perhaps by using other sensory organs. The higher activity of flagella-less bees during the day further suggests that the flagella are involved in mediating the brood signals modulating plasticity in the circadian system.  相似文献   

8.
Honeybees, Apis mellifera, who show temporal polyethism, begin their adult life performing tasks inside the hive (hive bees) and then switch to foraging when they are about 2–3 weeks old (foragers). Usually hive tasks require little or no flying, whereas foraging involves flying for several hours a day and carrying heavy loads of nectar and pollen. Flight muscles are particularly plastic organs that can respond to use and disuse, and accordingly it would be expected that adjustments in flight muscle metabolism occur throughout a bee’s life. We thus investigated changes in lifetime flight metabolic rate and flight muscle biochemistry of differently aged hive bees and of foragers with varying foraging experience. Rapid increases in flight metabolic rates early in life coincided with a switch in troponin T isoforms and increases in flight muscle maximal activities (V max) of the enzymes citrate synthase, cytochrome c oxidase, hexokinase, phosphofructokinase, and pyruvate kinase. However, further increases in flight metabolic rate in experienced foragers occurred without additional changes in the in vitro V max of these flight muscle metabolic enzymes. Estimates of in vivo flux (v) compared to maximum flux of each enzyme in vitro (fractional velocity, v/V max) suggest that most enzymes operate at a higher fraction of V max in mature foragers compared to young hive bees. Our results indicate that honeybees develop most of their flight muscle metabolic machinery early in life. Any further increases in flight metabolism with age or foraging experience are most likely achieved by operating metabolic enzymes closer to their maximal flux capacity.  相似文献   

9.
The circadian oscillation of the intensity of flight activity (number of honeybees returning to the hive each minute) was registered during springtime.Bees arriving at the hive were captured, dissected, and their gut content was analysed. Three conclusions were reached from the present work. (1) Daily flight activity is confined to the warm hours when the temperature is higher than a certain threshold. (2) Flight activity shows two intensity maximums: one in the morning correlated with an increased nectar flow in the hive and another in the afternoon between 15 and 16 hr (solar time) not correlated with nectar flow (correlated with photoperiod). (3) Bees captured during the afternoon maximum were engaged in brood nursing activity. The possible significance of this photoperiodically released activity in the afternoon is discussed.  相似文献   

10.
A honeybee colony is a superorganism that has evolved precise communication systems, which allow the colony to gather information from numerous individuals and coordinate its behavior. Alarm pheromones, such as isopentyl acetate (IPA), the main component of sting alarm pheromone, play a critical role in the coordination of individual behaviors as well as colony communication in honeybee colonies. In this study, honeybees (Apis mellifera ligustica and Apis cerana cerana) were exposed to relatively high levels of IPA at a foraging site (6–8 bee equivalents) and inside their colony (28–58 bee equivalents) to investigate the influence of alarm pheromones on foraging activity and hive flight activity. IPA reduced the number of bees that flew out the hive, foraged, and waggle danced. Under both contexts in the hive and at the food source, IPA can therefore inhibit honey bee foraging and foraging communication.  相似文献   

11.
Temperate races of honey bees (Apis mellifera) are able to survive cold temperatures by forming thermoregulatory clusters. Small hive beetles (Aethina tumida), which inhabit honey bee colonies in their native range of sub-Saharan Africa and in their introduced ranges of the United States and Australia, are able to endure temperate climates by entering the bee cluster when cold temperatures persist. We conducted an experiment to address the temporal aspects of the cluster-entering behavior of small hive beetles. We did this by exposing beetle-infested observation bee hives to different ambient temperatures and counting the number of beetles remaining in confinement sites on the hive’s periphery at each temperature. The resulting regression analyses suggest that the beetles enter the cluster more rapidly than they exit it, a behavior possibly linked to a colony’s decision to form and dismantle a cluster.  相似文献   

12.
Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.  相似文献   

13.
Summary Seasonal foraging patterns were investigated using six observation colonies maintained in the Okavango Delta, Botswana. Pollen collection, flight from the hive, and recruitment for pollen and nectar sources occurred throughout the 11 months of the study. However, the distribution of foraging activity throughout the day changed seasonally. Colonies emphasized recruitment for pollen sites throughout most of the year. Brood production occurred in all months except May, and there was a significant, positive correlation between the proportion of recruitment activity devoted to pollen sources and the amount of brood comb in the colonies. The seasonal foraging patterns ofscutellata in the Okavango were similar to those of Africanized honey bees in the neotropics. The extended foraging season and emphasis on pollen collection may be associated with the high swarming rates and migrational movements of tropical honey bees.  相似文献   

14.
Juvenile hormone paces behavioral development in the adult worker honey bee   总被引:1,自引:0,他引:1  
Behavioral development in the adult worker honey bee (Apis mellifera), from performing tasks inside the hive to foraging, is associated with an increase in the blood titer of juvenile hormone III (JH), and hormone treatment results in precocious foraging. To study behavioral development in the absence of JH we removed its glandular source, the corpora allata, in 1-day-old adult bees. The age at onset of foraging for allatectomized bees in typical colonies was significantly older compared with that of sham-operated bees in 3 out of 4 colonies; this delay was eliminated by hormone replacement in 3 out of 3 colonies. To determine the effects of corpora allata removal on sensitivity to changes in conditions that influence the rate of behavioral development, we used "single-cohort" colonies (composed of only young bees) in which some colony members initiate foraging precociously. The age at onset of foraging for allatectomized bees was significantly older compared with that of sham-operated bees in 2 out of 3 colonies, and this delay was eliminated by hormone replacement. Allatectomized bees initiated foraging at significantly younger ages in single-cohort colonies than in typical colonies. These results demonstrate that JH influences the pace of behavioral development in honey bees, but is not essential for either foraging or altering behavioral development in response to changes in conditions.  相似文献   

15.
The development of an infestation by five to eight introduced adult females ofVarroa jacobsoni Oud. in 35 honey-bee (Apis mellifera L.) colonies was monitored for 16 months with no outside source of infestation. Calculations on the size of the mite populations were based on collection of debris, samples of bees and brood, and estimates of number of bees and broodcells during the summer. In the winter, only dead bees and debris were collected. Samples were taken at 3-week intervals. Data indicated that the mite population probably could increase more than 100 times within one summer, and more than ten times between years, in a climate with a brood-rearing period of less than five months. A large variation in mite population increase existed between colonies. The winter mortality of mites that die with the host or drop from the winter cluster has a large influence on the population dynamics of the mite. Data also indicated that the simple method of counting mites in hive debris is a useful parameter for monitoring the population development ofVarroa in colonies with hatching brood.  相似文献   

16.
Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33–36°C). Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is “endothermy on demand” of adults. An increase of cold stress (cooling of the colony) increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to ∼2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (<∼2 days) both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb surface. The findings show that thermal homeostasis of honeybee colonies is achieved by a combination of active and passive processes. The differential individual endothermic and behavioral reactions sum up to an integrated action of the honeybee colony as a superorganism.  相似文献   

17.
1. Females of the desert solitary bee Anthophora pauperata collect nectar and pollen almost exclusively from Alkanna orientalis (Boraginaceae). The bee and plant are found together in the early spring, living in the bottom of steep-sided wadis (dry river valleys) at an altitude of 1500 m in Egyptian Sinai. 2. Female A. pauperata showed clear morning and afternoon peaks in foraging activity, separated by a 2–3 h midday period spent in their underground nests. This study analyses the following in order to identify the factors structuring this daily pattern: thermal aspects of the bee and its environment, temporal patterns of resource provision by the plant, and female nectar and pollen foraging behaviour. 3. Although A. pauperata can generate substantial heat endothermically, morning and evening ambient temperatures well below 10 °C defined a thermal window within which foraging occurred. Maximum air temperatures were moderate (25–30 °C), and examination of the physiology and behaviour of A. pauperata suggests that the midday reduction in flight activity was not due to thermal constraints. 4. Alkanna orientalis produces protandrous hermaphroditic flowers. Female A. pauperata collected pollen from male-phase flowers and harvested nectar preferentially from female-phase flowers. Although the nectar standing crop was relatively constant throughout the day, pollen availability peaked strongly in the early afternoon. 5. Female A. pauperata visited young male-phase flowers as soon as they opened, generating an early afternoon peak in pollen foraging activity and depleting the pollen standing crop rapidly. A morning peak in pollen foraging occurred when females gleaned remnant pollen from flowers that had opened the previous day. Pollen availability in the morning was far lower than in the early afternoon, and the time taken to collect a full pollen load in the morning was significantly longer. Collection of pollen in the morning despite very low resource availability suggests that pollen may be a limiting resource for A. pauperata. 6. In contrast to many existing examples of bimodal activity patterns in highly endothermic bees, the bimodal activity patterns of female A. pauperata appear to be driven not by thermal considerations but by daily patterns of pollen release from its principal food source.  相似文献   

18.
One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.  相似文献   

19.
西方蜜蜂Apis mellifera作为典型的社会性昆虫, 最重要的特征是生殖劳动分工。蜂王垄断蜂群的生殖权利, 工蜂生殖功能受到抑制, 从事除产卵和交配以外的所有职能。而在无政府主义蜂群中, 即使蜂王存在, 也有较多工蜂的卵巢激活并产卵, 蜂群中大多数雄蜂是工蜂的后代。这些特殊蜂群为正常蜂群工蜂不育机制研究提供了绝佳的反例材料。本文对无政府主义蜂群的行为特征、 产生条件、 遗传基础等研究进行了综述。无政府主义蜂群中有较多的工蜂产卵, 且工蜂所产卵能够逃避工蜂监督, 这种行为的产生受环境、 遗传组成、 基因表达等多种因素的影响, 并且遗传结构体系复杂, 参与调控的基因数量多。无政府主义蜂群行为机制的研究为工蜂不育机制的揭示及其他社会性昆虫工职不育基因的筛选和功能研究提供借鉴。  相似文献   

20.

Background

Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences.

Methodology

Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics.

Principal Findings

Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes.

Conclusions

This work demonstrates the accessibility of chemosensory information in the honeybee colonies with respect to incoming nectar. The modulation of the sensory-response systems within the hive can have important effects on the dynamics of food transfer and information propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号