首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.  相似文献   

4.
Physical exercise is considered to exert a positive effect on health, whereas strenuous or excessive exercise (Exe) causes fatigue and damage to muscle and immune functions. The underlying molecular mechanisms are still unclear. We designed a protocol to mimic Exe and explore the ensuing cellular damage and involvement of mitochondrial dynamics. We found that Exe was prone to decrease endurance capacity and induce damage to renal function and the immune system. Muscle atrophy markers atrogin-1 and MuRF1 mRNA were increased by Exe, accompanied by increased autophagy and mitochondrial fission in skeletal muscle. Exe caused a decrease in PGC-1α and complex I expression; it also activated JNK and Erk1/2 pathways and consequently induced p53, p21, and MnSOD expression in skeletal muscle. The involvement of oxidant-induced autophagy and mitochondrial dysfunction was confirmed in C2C12 myoblasts. Hydroxytyrosol (HT), a natural olive polyphenol, efficiently enhanced endurance capacity and prevented Exe-induced renal and immune system damage. Also, HT treatment inhibited both the Exe-induced increase in autophagy and mitochondrial fission and the decrease in PGC-1α expression. In addition, HT enhanced mitochondrial fusion and mitochondrial complex I and II activities in muscle of Exe rats. These results demonstrate that Exe-induced fatigue and damage to muscle and immune functions may be mediated via the regulation of mitochondrial dynamic remodeling, including the downregulation of mitochondrial biogenesis and upregulation of autophagy. HT supplementation may regulate mitochondrial dynamic remodeling and enhance antioxidant defenses and thus improve exercise capacity under Exe conditions.  相似文献   

5.
6.
7.
There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10-30 m/min for 30 min). Preinjection of β?-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β?-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β?-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.  相似文献   

8.
Oxidative stress is a great challenge to neurons following cerebral ischemia. PGC-1α has been shown to act as a potent modulator of oxidative metabolism. In this study, the effects of ZLN005, a small molecule that activate PGC-1α, against oxygen–glucose deprivation (OGD)- or ischemia-induced neuronal injury in vitro and in vivo were investigated. Transient middle cerebral artery occlusion (tMCAO) was performed in rats and ZLN005 was administered intravenously at 2 h, 4 h, or 6 h after ischemia onset. Infarct volume and neurological deficit score were detected to evaluate the neuroprotective effects of ZLN005. Well-differentiated PC12 cells, which were subjected to OGD for 2 h followed by reoxygenation for 22 h, were used as an in vitro ischemic model. Changes in expression of PGC-1α, its related genes, and antioxidant genes were determined by real-time quantitative PCR. The results showed that ZLN005 reduced cerebral infarct volume and improved the neurological deficit in rat with tMCAO, and significantly protected OGD-induced neuronal injury in PC12 cells. Furthermore, ZLN005 enhanced expression of PGC-1α in PC12 cells and in the ipsilateral hemisphere of rats with tMCAO. Additionally, ZLN005 increased antioxidant genes, including SOD1 and HO-1, and significantly prevented the ischemia-induced decrease in SOD activity. Taking together, the PGC-1α activator ZLN005 exhibits neuroprotective effects under ischemic conditions and molecular mechanisms possibly involve activation of PGC-1α signaling pathway and cellular antioxidant systems.  相似文献   

9.
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.  相似文献   

10.
11.
12.
Fibroblast growth factor 21 (FGF21) is a growth factor with pleiotropic effects on regulating lipid and glucose metabolism. Its expression is increased in skeletal muscle of mice and humans with mitochondrial disorders. However, the effects of FGF21 on skeletal muscle in response to mitochondrial respiratory chain deficiency are largely unknown. Here we demonstrate that the increased expression of FGF21 is a compensatory response to respiratory chain deficiency. The mRNA and protein levels of FGF21 were robustly raised in skeletal muscle from patients with mitochondrial myopathy or MELAS. The mammalian target of rapamycin (mTOR) phosphorylation levels and its downstream targets, Yin Yang 1 (YY1) and peroxisome proliferator-activated receptor γ, coactivator 1α (PGC-1α), were increased by FGF21 treatment in C2C12 myoblasts. Activation of the mTOR–YY1–PGC1α pathway by FGF21 in myoblasts regulated energy homeostasis as demonstrated by significant increases in intracellular ATP synthesis, oxygen consumption rate, activity of citrate synthase, glycolysis, mitochondrial DNA copy number, and induction of the expression of key energy metabolic genes. The effects of FGF21 on mitochondrial function required phosphoinositide 3-kinase (PI3K), which activates mTOR. Inhibition of PI3K, mTOR, YY1, and PGC-1α activities attenuated the stimulating effects of FGF21 on intracellular ATP levels and mitochondrial gene expression. Our findings revealed that mitochondrial respiratory chain deficiency elicited a compensatory response in skeletal muscle by increasing the FGF21 expression levels in muscle, which resulted in enhanced mitochondrial function through an mTOR–YY1–PGC1α-dependent pathway in skeletal muscle.  相似文献   

13.
14.
15.
16.
MicroRNAs (miRNAs) are involved in the regulation of immunity, including the lymphocyte development and differentiation, and inflammatory cytokine production. Dendritic cells (DCs) play important roles in linking innate and adaptive immune responses. However, few miRNAs have been found to regulate the innate response and APC function of DCs to date. Calcium/calmodulin-dependent protein kinase II (CaMKII), a major downstream effector of calcium (Ca(2+)), has been shown to be an important regulator of the maturation and function of DCs. Our previous study showed that CaMKIIα could promote TLR-triggered production of proinflammatory cytokines and type I IFN. Inspired by the observations that dicer mutant Drosophila display defect in endogenous miRNA generation and higher CaMKII expression, we wondered whether miRNAs can regulate the innate response and APC function of DCs by targeting CaMKIIα. By predicting with software and confirming with functional experiments, we demonstrate that three members of the miRNA (miR)-148 family, miR-148a, miR-148b, and miR-152, are negative regulators of the innate response and Ag-presenting capacity of DCs. miR-148/152 expression was upregulated, whereas CaMKIIα expression was downregulated in DCs on maturation and activation induced by TLR3, TLR4, and TLR9 agonists. We showed that miR-148/152 in turn inhibited the production of cytokines including IL-12, IL-6, TNF-α, and IFN-β upregulation of MHC class II expression and DC-initiated Ag-specific T cell proliferation by targeting CaMKIIα. Therefore, miRNA-148/152 can act as fine-tuner in regulating the innate response and Ag-presenting capacity of DCs, which may contribute to the immune homeostasis and immune regulation.  相似文献   

17.
18.
19.
20.
BackgroundImpairment of mitochondrial biogenesis is associated with the pathological progression of Parkinson's disease (PD). Parkin-interacting substrate (PARIS) can be ubiquitinated by parkin and prevents the repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α).PurposeThis study investigated whether the neuroprotective mechanism of carnosic acid (CA) from rosemary is mediated via the regulation of PARIS and PGC-1α by parkin.MethodsThe Western blotting and RT-PCR were used to determine protein and mRNA, respectively. To investigate the protein-protein interaction of between PARIS and ubiquitin, the immunoprecipitation assay (IP assay) was utilized. Silencing of endogenous parkin or PGC-1α was performed by using transient transfection of small interfering RNA (siRNA).ResultsSH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA) increased PARIS protein, decreased PGC-1α protein, and reduced protein and mRNA of mitochondrial biogenesis-related genes. CA pretreatment reversed the effects of 6-OHDA. By IP assay, the interaction of PARIS with ubiquitin protein caused by CA was stronger than that caused by 6-OHDA. Moreover, knockdown of parkin attenuated the ability of CA to reverse the 6-OHDA-induced increase in PARIS and decrease in PGC-1α expression. PGC-1α siRNA was used to investigate how CA influenced the effect of 6-OHDA on the modulation of mitochondrial biogenesis and apoptosis. In the presence of PGC-1α siRNA, CA could no longer significantly reverse the reduction of mitochondrial biogenesis or the induction of cleavage of apoptotic-related proteins by 6-OHDA.ConclusionThe cytoprotective of CA is related to the enhancement of mitochondrial biogenesis by inhibiting PARIS and inducing PGC-1α by parkin. The activation of PGC-1α-mediated mitochondrial biogenesis by CA prevents the degeneration of dopaminergic neurons, CA may have therapeutic application in PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号