首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actinomycin D (actD) (0.003–0.10 μg/ml) and cordycepin (3–30 μg/ml) were used to examine the requirement of de novo RNA synthesis in the pH 6.6-induced expression of neurites and acetylcholinesterase activity in C-1300 mouse neuroblastoma cells. ActD at 0.03 and 0.10 μg/ml caused a pronounced stimulation in neurite formation following 20 h of treatment, although by 30 h exposure to actD (0.01–0.10 μg/ml), neurite formation had rapidly declined. Cordycepin (3–30 μg/ml) also inhibited neurite formation in a concentration- and time-dependent manner, although it did not produce an initial stimulation in neurite formation. The pH 6.6-induced increase in acetylcholinesterase activity was inhibited by both actD and cordycepin in a concentration- and time-dependent manner. Cell viabilities in the presence of actD and cordycepin were 90% or greater throughout the course of these studies.The effects of actD on [3H]uridine and [3H]leucine transport into cells and on incorporation into acid-insoluble material showed that actD inhibited RNA synthesis to a greater extent than it inhibited protein synthesis. Cordycepin caused only minor effects on [3H]uridine and [3H]leucine transport into cells and incorporation into acid-insoluble material; these effects were variable and neither concentration- nor time-dependent. The results of this study show that actD can inhibit the pH 6.6-induced expression of neurites and acetylcholinesterase activity in mouse neuroblastoma cells at concentrations which were relatively non-toxic and which caused a greater inhibition of RNA synthesis than of protein synthesis. This suggests that de novo RNA synthesis is required for the expression and maintenance of neurites and acetylcholinesterase activity in mouse neuroblastoma cells. Experiments with cordycepin were consistent with this conclusion.  相似文献   

2.
Tubulin heterogeneity was analyzed during morphological differentiation of a mouse neuroblastoma clone (C 1300). One form of β-tubulin was found to be specific of the differentiated cells. The synthesis of this isoform is strictly related to neurite outgrowth process and has been shown to be regulated at the post-translational level.  相似文献   

3.
By examining microtubule regrowth using immunofluorescence with antibody to tubulin, we have studied the structure and intracellular localization of microtubule initiation sites in undifferentiated and differentiated mouse neuroblastoma cells. The undifferentiated cells are round and lack cell processes. They contain an average of 12 initiation sites per cell. Each of these sites, which are located near the cell nucleus, initiates the growth of several microtubules in a radial formation. In contrast to the undifferentiated cells, neuroblastoma cells stimulated to differentiate by serum deprivation are asymmetrical, containing one or two very long neurites. These cells have a single, large microtubule initiation center which can be visualized not only by immunofluorescence but by phase-contrast and differential interference microscopy as well. The initiation site measures 3-4 mu in diameter and is located in the cell body along a line defined by the neurite. During cell differentiation, the large initiation, the large initiation center seems to be formed by the aggregation of many smaller sites. This process procedes neurite extension by about 24 hr. The growth of microtubules from this center appears to be highly oriented, since most microtubules initially grow into the neurite processes rather than into the cell interior. Thus major changes in the structure and location of microtubule initiation sites occur during the differentiation of neuroblastoma cells. Similar changes are likely to be involved in alterations in the morphology of other cell types.  相似文献   

4.
Cell division, neurite formation and acetylcholinesterase activity were examined in a clone (NBA2) of mouse neuroblastoma cells maintained for up to 120 hours in medium with pH values between 6.6 and 8.0. Growth rate decreased as pH was reduced from 7.8 to 6.6. Generation time at pH 7.4 was 25 hours, while the rate of cell division was negligible at pH 6.6. The total number of cells at stationary phase was less at the lower pH values. Neurite formation was enhanced markedly as the pH was reduced from 7.4 to 6.6. Acetylcholinesterase activity was 5- to 8-fold greater in cells exposed to medium at pH 6.6 than in cells maintained in medium at pH 7.4. The reduction in the rate of cell division and increases in neurite formation and acetylcholinesterase activity at pH 6.6 were reversible upon exposure of the cells to pH 7.4 medium. Cell viability was greater than 90% at all medium pH values over a period of 120 hours. Uncloned T-59 mouse neuroblastoma cells were affected similarly by changes in pH. These results show that manipulation of the environmental pH can reversibly alter growth, neurite formation, and acetylcholinesterase activity of mouse neuroblastoma cells in culture.  相似文献   

5.
Reactive oxygen species induce neuronal cell death. However, the detailed mechanisms of cell death have not yet been elucidated. Previously, we reported neurite degeneration before the induction of cell death. Here, we attempted to elucidate the mechanisms of neurite degeneration before the induction of cell death using the neuroblastoma N1E-115 cell line and a time-lapse live cell imaging system. Treatment with the calcium ionophore ionomycin induced cell death and neurite degeneration in a concentration- and time-dependent manner. Treatment with a low concentration of ionomycin immediately produced a significant calcium influx into the intracellular region in N1E-115 cells. After 1-h incubation with ionomycin, the fluorescence emission of MitoSOXTM increased significantly compared to the control. Finally, analysis using a new mitochondrial specific fluorescence dye, MitoPeDPP, indicated that treatment with ionomycin significantly increased the mitochondrial lipid hydroperoxide production in N1E-115 cells. The fluorescence emissions of Fluo-4 AM and MitoPeDPP were detected in the cell soma and neurite regions in ionomycin-treated N1E-115 cells. However, the emissions of neurites were much lower than those of the cell soma. TBARS values of ionomycin-treated cells significantly increased compared to the control. These results indicate that ionomycin induces calcium influx into the intracellular region and reactive oxygen species production in N1E-115 cells. Lipid hydroperoxide production was induced in ionomycin-treated N1E-115 cells. Calcium influx into the intracellular region is a possible activator of neurite degeneration.  相似文献   

6.
Neutral endopeptidase-24.11 (EC 3.4.24.11) (NEP) is a transmembrane metallo-endopeptidase that has been shown to be involved in the degradation of several mammalian neuropeptides, including enkephalins. The enzyme has recently been found to be specifically associated with the axonal and synaptic membranes of neurons in the globus pallidus of the pig brain. This result suggests that neurons must possess mechanisms for targeting NEP to particular membrane domains. Study of these mechanisms would greatly benefit from the existence of an established neuron-like cell line capable of expressing and targeting NEP to specific membrane domains. For this reason we have used a retroviral vector containing the cDNA for rabbit kidney NEP to express this enzyme in a mouse neuroblastoma cell line (Neuro2A). Labelling of the cell surface with an antibody coupled to colloidal gold particles and examination of the cells by electron microscopy revealed a non-uniform distribution of NEP at the surface of the cells, the protein being preferentially associated with the membrane of neurites compared with the cell body. This observation suggests that Neuro2A cells possess a mechanism for targeting NEP to specific domains of the plasma membrane. This cell line could thus constitute a good model for studying the mechanisms responsible for targeting this enzyme to specialized regions of the plasma membrane.  相似文献   

7.
8.
K Murato  D Monard 《FEBS letters》1982,144(2):321-325
The hog sucrase—isomaltase complex is anchored to the small-intestinal brush border membrane, as in the rabbit, via a hydrophobic segment located in the N-terminal region of the isomaltase subunit. The immediate precursor of the ‘final’ sucrase—isomaltase (i.e., pro-sucrase—isomaltase as prepared from adult hogs whose pancreas had been disconnected from the duodenum) is an amphiphilic single polypeptide chain of Mr 260 000–265 000. Its N-terminal sequence is virtually identical with (not merely homologous to) the corresponding region of the isomaltase subunit of ‘final’ sucrase-isomaltase. This shows that the isomaltase portion of pro-sucrase—isomaltase in the N-terminal ‘half’ of the precursor polypeptide chain. Thus the succession of domains in pro-sucrase—isomaltase and its mode of anchoring in the membrane could be deduced. On this basis a likely mechanism of biosynthesis and insertion is proposed.  相似文献   

9.
Cell hybrids (BIM) were produced between human neuroblastoma cells (IMR-32) and thymidine auxotrophs (B3T) of rat nerve-like cells (B103) in order to obtain cell lines undergoing stable neuronal differentiation. BIM cells exhibited the growth properties of partial transformation: 1) When the cell growth reached a plateau, BIM cells ceased to proliferate and expressed a differentiated phenotype. The shape of the cells changed from flat to round and they extended neurites. 2) When cultured in methylcellulose, BIM cells formed colonies, indicating that BIM cells have the ability of anchorage-independent growth. By Southern blot analysis, BIM cells had both human and rat types of N-myc genes. The human N-myc genes were amplified, but the extent of the amplification was lower in BIM cells than that in the parental cell line IMR-32. The rat N-myc gene was detected at a similar level in BIM, B3T, B103, and rat fibroblastic cells 3Y1. Therefore, the decrease in amplification of human N-myc genes may be involved in the properties of partial reverse-transformation in BIM cells. When treated with various drugs such as db-cAMP, forskolin, and cAMP with isobutyl-methylxanthine, BIM cells expressed a nerve-like phenotype. These findings indicate that cell hybridization yielded partial normalization of transformed nerve-like cells.  相似文献   

10.
A clonal cell line of mouse neuroblastoma cells was found to undergo morphological differentiation in the presence of a K+ ionophore, valinomycin, in the assay medium. This effect was blocked by increasing the concentration of KCl of the medium, suggesting that the changes in resting membrane potential and ion fluxes may be involved in the mechanism of the formation of neurites. No enhancement of the neurite formation was observed in salines containing high concentrations of KCl in the absence of valinomycin. Depolarizing agents including veratridine, gramicidin and ouabain did not stimulate the outgrowth of neurites. Neither electrophoretic mobility of the cells nor molecular anisotropy of fluorescence probes in the membranes was modified by the treatment of valinomycin. Instead, it modified the slow binding phase in kinetics of the interaction of 1-anilinonaphthalene-8-sulfonate (ANS) with the cells, which is related to the penetration process of the probe into membranes. Valinomycin also enhanced the fluorescence intensity of ANS by increasing the binding sites in neuroblastoma cells.  相似文献   

11.
12.
1. Muscarinic acetylcholine receptors in a plasma-membrane fraction derived from mouse neuroblastoma clone NIE-115 bind [3-3H]quinuclidinyl benzilate according to the Law of Mass Action (Kdissociation 40 pM, h0.96). 2. Antagonist and agonist binding to the receptor was studied by displacement of [3-3H]quinuclidinyl benzilate with non-radioactive ligands. The data show good agreement with similar data obtained on rat brain and ideal smooth muscle [Birdsall & Hulme (1976) J. Neurochem. 27, 7-16] indicating that the receptor is very similar in these three tissues.  相似文献   

13.
Antisense oligodeoxynucleotides were found to be stable in the culture medium containing fetal calf serum (heat-inactivated 30 minutes at 65 degrees C) and in cells. Antisense oligomer treatment causes cessation of mitoses, but does not lead to morphological differentiation. Under antisense conditions, we have observed an increase in the amount of two neurospecific protein, namely peripherin and gamma-enolase. Comparison of the results obtained with chemical inducers and antisense oligodeoxynucleotides allows us to postulate three phases in N1E-115 differentiation: the first correspond to the arrest of mitosis, the second to the expression of a limited neuronal program, and the third to the morphological and electrophysiological differentiation.  相似文献   

14.
Adriamycin, an anticancer agent acting on topoisomerase II, promotes the arrest of cell division and neurite extension in a "neurite-minus" murine neuroblastoma cell line, N1A-103. This morphological differentiation is accompanied by a blockade in the S phase of the cell cycle, modification of the amount of peripherin, and appearance of the beta 7-tubulin isoform. Yet, adriamycin-induced N1A-103 cells fail to express other neuronal markers, such as long-lasting Ca2+ channels, synaptophysin, and the shift in the proportion of the beta'1 tubulin isoform to the beta'2 isoform, whose appearance parallels the terminal differentiation of the wild type neuroblastoma cell line N1E-115. Hence, a comparison of the behavior of these two cell lines leads to the proposal that there are two programs of neuroblastoma differentiation: one where expression is triggered by the arrest of cell division and which is observed in adriamycin-induced N1A-103 variant cells, and the other, presumably occurring further downstream, which would involve further changes in morphogenesis and acquisition of new electrophysiological properties.  相似文献   

15.
The poor survival of stem cells seriously limits their therapeutic efficacy for myocardial infarction (MI). Mineralocorticoid receptor (MR) activation plays an important role in the pathogenesis of multiple cardiovascular diseases. Here, we examined whether MR silencing in bone marrow derived mesenchymal stem cells (MSCs) could improve MSCs’ survival and enhance their cardioprotective effects in MI. MSCs from male Sprague‐Dawley rats were transfected with adenoviral small interfering RNA to silence MR (siRNA‐MR). MR silencing decreased hypoxia‐induced MSCs’ apoptosis, as demonstrated by Annexin V/7‐AAD staining. The mechanisms contributing to the beneficial effects of MR depletion were associated with inhibiting intracellular reactive oxygen species production and increased Bcl‐2/Bax ratio. In vivo study, 1 × 106 of MSCs with or without siRNA‐MR were injected into rat hearts immediately after MI. Depletion of MR could improve the MSCs’ survival significantly in infarcted myocardium, associated with more cardiac function improvement and smaller infarct size. Capillary density were also significantly higher in siRNA group with increased expression of vascular endothelial growth factor. Our study demonstrated that silencing MR promoted MSCs’ survival and repair efficacy in ischaemic hearts. MR might be a potential target for enhancing the efficacy of cell therapy in ischaemic heart disease.  相似文献   

16.
Summary Neuroblastoma cells grown on substrates in culture develop long processes and assume the morphology of normal neurons as judged light microscopically. The development of synapses in the cultured tissue is studied by periodic electron microscopic examination of the areas of contact between cells. The initial expiants are free of any apparent synaptic contacts. After 48 h in culture, simple swellings or boutons are detected at the periphery of the cells or at the end of the fine processes. These initial synaptic profiles contain a few vesicles but lack mitochondria. The synaptic vesicles appear to originate from the smooth endoplasmic reticulum. Further expiants remain primitive, only the number of vesicles in the cytoplasmic swellings or boutons increases. These clusters of vesicles are 40–60 nm in diameter and morphologically distinguishable from the synaptic vesicles of normal neurons. There are no postsynaptic folds or membrane thickenings. Specialized cell contacts between cells are also present.  相似文献   

17.
When neuroblastoma cells (N18) in vitro were exposed to the bifunctional alkylating agent di-2-chloroethyl sulfide (HS), the specific activity of acetylcholinesterase began to rise rapidly after an initial lag period of 1 to 2 days. The five-fold increase in enzyme activity at 4 days after exposure to 0.5 μg/ml of HS was accompanied by a 25-fold rise in the rate of reappearance of acetylcholinesterase activity following essentially irreversible inhibition. Based on previous experience with acetylcholinesterase synthesis in serum deprived neuroblastoma cells, this behavior indicates induction of the enzyme. Vinblastine blocked the concomitant large increase in neurite extension which was stimulated by HS, but left acetylcholinesterase induction unaffected. Since enzyme activity was inversely related to the ability of the monolayer cells to form microcolonies, we conclude that acetylcholinesterase induction is dependent upon inhibition of cell division and independent of neurite extension. The monofunctional analogue of HS, 2-chloroethyl ethyl sulfide (CEES), produced similar effects, but much higher concentrations were required.  相似文献   

18.
19.
The promotion of neurite formation in Neuro2A cells by mouse Mob2 protein   总被引:1,自引:0,他引:1  
Lin CH  Hsieh M  Fan SS 《FEBS letters》2011,(3):1433-530
The molecular mechanism of neuritogenesis has been extensively studied but remains unclear. In this study, we identified Mob2 protein which plays a significant role in promoting neurite formation in Neuro2A (N2A) cells. Our results showed that Mob2 was expressed in developing N2A cells. To study whether Mob2 was involved in neurite formation, we downregulated Mob2 expression using RNA interference and found that neurite formation decreased in low serum induced N2A cells. In addition, we found that overexpression of Mob2 promoted neurite formation in N2A cells. Furthermore, downregulation of Mob2 expression altered the rearrangement of the actin cytoskeleton and decreased the expression of phosphorylated Moesin. Together, these results provide information on the role of Mob2 in mediating neurite formation.  相似文献   

20.
—Polyamine metabolism of mouse neuroblastoma cells grown in culture was studied with special reference to the synthesis of GABA from putrescine and putreanine from spermidine. This study shows that neuroblastoma cells in the presence of a complete culture medium containing calf serum readily metabolized [14C]putrescine to GABA; the rate of synthesis is similar to the rate of synthesis of spermidine from putrescine. In the absence of serum the conversion of putrescine to GABA is minimal. In the presence of serum GABA formation is completely inhibited by the diamine oxidase inhibitor aminoguanidine. GABA synthesis does not occur in the absence of cells. The GABA synthesized is not readily metabolized to succinate or homocarnosine. Mouse neuroblastoma cells metabolized [14C]ornithine to putrescine, GABA, and spermidine. Spermidine was metabolized to putrescine, putreanine and spermine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号