首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, a unimolecular tri-agonist with activity at glucagon-like peptide 1 receptor (GLP-1R), glucose dependent insulinotropic receptor, and the glucagon receptor was reported to improve glycemic control in mice. Here, we defined the underlying molecular mechanisms of enhanced insulin secretion in murine pancreatic islets for a specific tri-agonist. The tri-agonist induced an increase in insulin secretion from murine islets compared to the respective mono-agonists. GLP-1R mainly signals via activation of the Gαs pathway, but inhibition of protein kinase A (H89) and exchange protein activation by cAMP (EPAC) (ESI-09) could not completely block insulin release induced by tri-agonist. Electrophysiological observations identified a strong increase of intracellular Ca2+ concentration and whole-cell currents induced by tri-agonist via transient receptor potential channels (TRPs). Although, EPAC activation mobilizes intracellular Ca2+ via TRPs, the TRPs blockers (La3+ and Ruthenium Red) had a larger inhibitory impact than ESI-09 on tri-agonist stimulatory effects. To test for other potential mechanisms, we blocked PLC activity (U73122) which reduced the superior effect of tri-agonist to induce insulin secretion, and partially inhibited the induced Ca2+ influx. This result suggests that the relative effect of tri-agonist on insulin secretion caused by GLP-1R agonism is mediated mainly via Gαs signaling and partially by activation of PLC. Therefore, the large portion of the increased intracellular Ca2+ concentration and the enhanced whole-cell currents induced by tri-agonist might be attributable to TRP channel activation resulting from signaling through multiple G-proteins. Here, we suggest that broadened intracellular signaling may account for the superior in vivo effects observed with tri-agonism.  相似文献   

2.
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production.  相似文献   

3.
Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K+ channels, voltage-dependent K+ channels, TRPM2 cation channels, intracellular Ca2+ release channels, and Ca2+-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.  相似文献   

4.
In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic β-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic β-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca2+) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca2+ oscillations in the β-cell. Slow Ca2+ oscillations (<1 min–1) produce low-frequency cAMP oscillations, and faster Ca2+ oscillations (>3–4 min–1) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca2+ oscillations. In contrast, observed antiphasic Ca2+ and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca2+-dependent AC and PDE activation in coupling of Ca2+ and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 β-cells. adenylyl cyclase; calcium ion; glucagon-like peptide 1; modeling; oscillations  相似文献   

5.
Uncarboxylated osteocalcin, a bone matrix protein, has been proposed to regulate glucose metabolism by increasing insulin secretion, improving insulin sensitivity and stimulating β cell proliferation. Our previous study also indicated that uncarboxylated osteocalcin stimulates insulin secretion by inhibiting voltage-gated potassium (KV) channels. The goal of this study is to further investigate the underlying mechanisms for the regulation of Kv channels and insulin secretion by uncarboxylated osteocalcin. Insulin secretion and Kv channel currents were examined by radioimmunoassay and patch-clamp technique, respectively. Calcium imaging system was applied to measure intracellular Ca2+ concentration ([Ca2+]i). The protein levels were detected by western blot. The results showed that uncarboxylated osteocalcin potentiated insulin secretion, inhibited Kv channels and increased [Ca2+]i compared to control. These effects were suppressed by phospholipase-C (PLC)/protein kinase C (PKC)/Ras/MAPK-ERK kinase (MEK) signaling pathway, indicating that this signaling pathway plays an important role in uncarboxylated osteocalcin-regulated insulinotropic effect. In addition, the results also showed that adenylyl cyclase (AC) did not influence the effect of uncarboxylated osteocalcin on insulin secretion and Kv channels, suggesting that AC is not involved in uncarboxylated osteocalcin-stimulated insulin secretion. These findings provide new insight into the mechanism of uncarboxylated osteocalcin-regulated insulin secretion.  相似文献   

6.
The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.  相似文献   

7.
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca2+-activated chloride channel (CaCC) is activated by Ca2+ agonists like UTP. We found that most chloride current elicited by Ca2+ agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca2+ activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca2+ agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca2+ agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca2+/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1–CFTR association is responsible for Ca2+/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca2+ agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.  相似文献   

8.

Background

Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors.

Methodology/Prinicipal Findings

GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered.

Conclusions/Significance

The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling.  相似文献   

9.

Objective

Adenylyl cyclases (ACs) play important role in regulating pancreatic beta cell growth, survival and secretion through the synthesis of cyclic AMP (cAMP). MDL-12,330A and SQ 22536 are two AC inhibitors used widely to establish the role of ACs. The goal of this study was to examine the effects of MDL-12,330A and SQ 22536 on insulin secretion and underlying mechanisms.

Methods

Patch-clamp recording, Ca2+ fluorescence imaging and radioimmunoassay were used to measure outward K+ currents, action potentials (APs), intracellular Ca2+ ([Ca2+]i) and insulin secretion from rat pancreatic beta cells.

Results

MDL-12,330A (10 µmol/l) potentiated insulin secretion to 1.7 times of control in the presence of 8.3 mmol/l glucose, while SQ 22536 did not show significant effect on insulin secretion. MDL-12,330A prolonged AP durations (APDs) by inhibiting voltage-dependent K+ (KV) channels, leading to an increase in [Ca2+]i levels. It appeared that these effects induced by MDL-12,330A did not result from AC inhibition, since SQ 22536 did not show such effects. Furthermore, inhibition of the downstream effectors of AC/cAMP signaling by PKA inhibitor H89 and Epac inhibitor ESI-09, did not affect KV channels and insulin secretion.

Conclusion

The putative AC inhibitor MDL-12,330A enhances [Ca2+]i and insulin secretion via inhibition of KV channels rather than AC antagonism in beta cells, suggesting that the non-specific effects is needed to be considered for the right interpretation of the experimental results using this agent in the analyses of the role of AC in cell function.  相似文献   

10.
β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca2+.  相似文献   

11.
Cyclic AMP (cAMP) and Ca2+ are key regulators of exocytosis in many cells, including insulin-secreting β cells. Glucose-stimulated insulin secretion from β cells is pulsatile and involves oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse β cells. These oscillations were preceded and enhanced by elevations of [Ca2+]i. However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca2+]i rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.  相似文献   

12.
Platelet activation must be tightly controlled to provide an effective, but not excessive, response to vascular injury. Cytosolic calcium is a critical regulator of platelet function, including granule secretion, integrin activation, and phosphatidylserine (PS) exposure. Here we report that the novel protein kinase C isoform, PKCθ, plays an important role in negatively regulating Ca2+ signaling downstream of the major collagen receptor, glycoprotein VI (GPVI). This limits PS exposure and so may prevent excessive platelet procoagulant activity. Stimulation of GPVI resulted in significantly higher and more sustained Ca2+ signals in PKCθ−/− platelets. PKCθ acts at multiple distinct sites. PKCθ limits secretion, reducing autocrine ADP signaling that enhances Ca2+ release from intracellular Ca2+ stores. PKCθ thereby indirectly regulates activation of store-operated Ca2+ entry. However, PKCθ also directly and negatively regulates store-independent Ca2+ entry. This pathway, activated by the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol, was enhanced in PKCθ−/− platelets, independently of ADP secretion. Moreover, LOE-908, which blocks 1-oleoyl-2-acetyl-sn-glycerol-induced Ca2+ entry but not store-operated Ca2+ entry, blocked the enhanced GPVI-dependent Ca2+ signaling and PS exposure seen in PKCθ−/− platelets. We propose that PKCθ normally acts to restrict store-independent Ca2+ entry during GPVI signaling, which results in reduced PS exposure, limiting platelet procoagulant activity during thrombus formation.  相似文献   

13.
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [3H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca2+ and cAMP signaling pathways. Histamine stimulated Ca2+ release through inositol 1,4,5-trisphosphate (IP3) receptors in hBASMCs. β2-adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca2+ signals. Responses to other Ca2+-mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E2 (PGE2), through EP2 and EP4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca2+ signals. There was no consistent relationship between the inhibition of Ca2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP2 and EP4 receptors, through cAMP and PKA, selectively inhibit Ca2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition.  相似文献   

14.
Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1‐AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca2+] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this ‘store‐operated’ pathway requires the ER Ca2+ sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET‐based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store‐operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca2+ entry via the plasma membrane Ca2+ channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca2+/cAMP crosstalk system.  相似文献   

15.
Pulsatile insulin release from glucose-stimulated β-cells is driven by oscillations of the Ca2+ and cAMP concentrations in the subplasma membrane space ([Ca2+]pm and [cAMP]pm). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP]pm, [Ca2+]pm, and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 β-cells. Elevation of the glucose concentration from 3 to 11 mm induced, after a 2.7-min delay, coordinated oscillations of [Ca2+]pm, [cAMP]pm, and PIP3. Inhibitors of protein kinase A (PKA) markedly diminished the PIP3 response when applied before glucose stimulation, but did not affect already manifested PIP3 oscillations. The reduced PIP3 response could be attributed to accelerated depolarization causing early rise of [Ca2+]pm that preceded the elevation of [cAMP]pm. However, the amplitude of the PIP3 response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP3 oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP3 oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca2+]pm and amplifying [cAMP]pm signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.  相似文献   

16.
Cyclic adenosine monophosphate (cAMP) and calcium ions (Ca2+) are two chemical molecules that play a central role in the stimulus-dependent secretion processes within cells. Ca2+ acts as the basal signaling molecule responsible to initiate cell secretion. cAMP primarily acts as an intracellular second messenger in a myriad of cellular processes by activating cAMP-dependent protein kinases through association with such kinases in order to mediate post-translational phosphorylation of those protein targets. Put succinctly, both Ca2+ and cAMP act by associating or activating other proteins to ensure successful secretion. Calcineurin is one such protein regulated by Ca2+; its action depends on the intracellular levels of Ca2+. Being a phosphatase, calcineurin dephosphorylate and other proteins, as is the case with most other phosphatases, such as protein phosphatase 2A (PP2A), PP2C, and protein phosphatase-1 (PP1), will likely be activated by phosphorylation. Via this process, calcineurin is able to affect different intracellular signaling with clinical importance, some of which has been the basis for development of different calcineurin inhibitors. In this review, the cAMP-dependent calcineurin bio-signaling, protein-protein interactions and their physiological implications as well as regulatory signaling within the context of cellular secretion are explored.  相似文献   

17.
Glucagon-like peptide 1 (GLP-1) is secreted by intestinal L-cells, and augments glucose-induced insulin secretion, thus playing an important role in glucose control. The stimulus-secretion pathway in L-cells is still incompletely understood and a topic of debate. It is known that GLP-1 secreting cells can sense glucose to promote electrical activity either by the electrogenic sodium-glucose cotransporter SGLT1, or by closure of ATP-sensitive potassium channels after glucose metabolism. Glucose also has an effect on GLP-1 secretion downstream of electrical activity. An important aspect to take into account is the spatial organization of the cell. Indeed, the glucose transporter GLUT2 is located at the basolateral, vascular side, while SGLT1 is exposed to luminal glucose at the apical side of the cell, suggesting that the two types of transporters play different roles in glucose sensing. Here, we extend our recent model of electrical activity in primary L-cells to include spatiotemporal glucose and Ca2+ dynamics, and GLP-1 secretion. The model confirmed that glucose transportation into the cell through SGLT1 cotransporters can induce Ca2+ influx and release of GLP-1 as a result of electrical activity, while glucose metabolism alone is insufficient to depolarize the cell and evoke GLP-1 secretion in the model, suggesting a crucial role for SGLT1 in triggering GLP-1 release in agreement with experimental studies. We suggest a secondary, but participating, role of GLUT2 and glucose metabolism for GLP-1 secretion via an amplifying pathway that increases the secretion rate at a given Ca2+ level.  相似文献   

18.
Ca2+-Induced insulin release from electropermeabilised islets is inhibited by the transglutaminase inhibitors monodansylcadaverine, glycine methylester, methylamine and cystamine but not by the control compounds dimethyl monodansylcadaverine and sarcosine methylester which lack the primary amine group. Neither monodansylcadaverine nor glycine methylester inhibited insulin secretion induced by either cAMP or the phorbol ester PMA at basal levels (10 nM) of Ca2+. These data provide further evidence for the involvement of transglutaminase in Ca2+ induced insulin secretion, they also suggest that insulin secretion induced by either cAMP or PMA may act in part by a mechanism independent of that induced by Ca2+.  相似文献   

19.
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems.  相似文献   

20.
Airway epithelial cells express both Ca2+ activated TMEM16A/ANO1 and cAMP activated CFTR anion channels. Previous work suggested a significant crosstalk of intracellular Ca2+ and cAMP signaling pathways, leading to activation of both chloride channels. We demonstrate that in airway epithelial cells, stimulation of purinergic or muscarinic G-protein coupled receptors (GPCRs) activates TMEM16A and CFTR. Additional expression of Gq/11 and phospholipase C coupled GPCRs strongly enhanced the crosstalk between Ca2+- and cAMP-dependent signaling. Knockdown of endogenous GRCRs attenuated crosstalk and functional coupling between TMEM16A and CFTR. The number of receptors did not affect expression or membrane localization of TMEM16A or CFTR, but controlled assembly of the local signalosome. GPCRs translocate Ca2+-sensitive adenylate cyclase type 1 (ADCY1) and exchange protein directly activated by cAMP (EPAC1) to particular plasma membrane domains containing GPCRs, CFTR and TMEM16A, thereby producing compartmentalized Ca2+ and cAMP signals and significant crosstalk. While biosynthesis and membrane trafficking of CFTR requires a functional Golgi apparatus, maturation and membrane trafficking of TMEM16A may occur independent of the Golgi. Because Ca2+ activated TMEM16A currents are only transient, continuous Cl secretion by airway epithelial cells requires CFTR. The present data also explain why receptor-dependent activation of TMEM16A is more efficient than direct stimulation by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号