首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under conditions that are not conducive to growth, such as nutrient depletion, many members of the orders Bacillales and Clostridiales can sporulate, generating dormant and resistant spores that can survive in the absence of nutrients for years under harsh conditions. However, when nutrients are again present, these spores can return to active growth through the process of germination. Many of the components of the spore germination machinery are conserved between spore forming members of the Bacillales and Clostridiales orders. However, recent studies have revealed significant differences between the germination of spores of Clostridium perfringens and that of spores of a number of Bacillus species, both in the proteins and in the signal transduction pathways involved. In this review, the roles of components of the spore germination machinery of C. perfringens and several Bacillus species and the bioinformatic analysis of germination proteins in the Bacillales and Clostridiales orders are discussed and models for the germination of spores of these two orders are proposed.  相似文献   

2.
γ-Type small, acid-soluble spore proteins (SASP) are the most abundant proteins in spores of at least some members of the bacterial order Bacillales, yet they remain an enigma from both functional and phylogenetic perspectives. Current work has shown that the γ-type SASP or their coding genes (sspE genes) are present in most spore-forming members of Bacillales, including at least some members of the Paenibacillus genus, although they are apparently absent from Clostridiales species. We have applied a new method of searching for sspE genes, which now appear to also be absent from a clade of Bacillales species that includes Alicyclobacillus acidocaldarius and Bacillus tusciae. In addition, no γ-type SASP were found in A. acidocaldarius spores, although several of the DNA-binding α/β-type SASP were present. These findings have elucidated the phylogenetic origin of the sspE gene, and this may help in determining the precise function of γ-type SASP.  相似文献   

3.
The use of anthrax spores as a bioweapon has spurred efforts aimed at identifying key proteins expressed in Bacillus anthracis. Because spore germination and outgrowth occur prior to and are required for disease manifestations, blocking germination and early outgrowth with novel vaccines or inhibitors targeting critical B. anthracis germination and outgrowth-associated factors is a promising strategy in mitigating bioterror. By screening 587 paired protein spots that were isolated from dormant and germinating anthrax spores, respectively, we identified 10 spore proteins with statistically significant germination-associated increases and decreases. It is likely that proteins whose levels change during germination may play key roles in the germination and outgrowth processes, and they should be listed as priority targets for development of prophylactic and therapeutic agents against anthrax. The 31 new proteins identified in this study also complement an emerging proteomic database of B. anthracis.  相似文献   

4.
Here we describe the functional relationship between YabG and transglutaminase (Tgl), enzymes that modify the spore coat proteins of Bacillus subtilis. In wild-type spores at 37 degrees C, Tgl mediates the crosslinking of GerQ into higher molecular mass forms; however, some GerQ multimers are found in tgl mutant spores, indicating that Tgl is not essential. Immunoblotting showed that spores isolated from a yabG mutant after sporulation at 37 degrees C contain only very low levels of GerQ multimers. Heat treatment for 20 min at 60 degrees C, which maximally activates the enzymatic activity of Tgl, caused crosslinking of GerQ in isolated yabG spores but not in tgl/yabG double-mutant spores. In addition, the germination frequency of the tgl/yabG spores in the presence of l-alanine with or without heat activation at 60 degrees C was lower than that of wild-type spores. These findings suggest that Tgl cooperates with YabG to mediate the temperature-dependent modification of the coat proteins, a process associated with spore germination in B. subtilis.  相似文献   

5.
The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.  相似文献   

6.
Spores of Bacillus species can remain in their dormant and resistant states for years, but exposure to agents such as specific nutrients can cause spores'' return to life within minutes in the process of germination. This process requires a number of spore-specific proteins, most of which are in or associated with the inner spore membrane (IM). These proteins include the (i) germinant receptors (GRs) that respond to nutrient germinants, (ii) GerD protein, which is essential for GR-dependent germination, (iii) SpoVA proteins that form a channel in spores'' IM through which the spore core''s huge depot of dipicolinic acid is released during germination, and (iv) cortex-lytic enzymes (CLEs) that degrade the large peptidoglycan cortex layer, allowing the spore core to take up much water and swell, thus completing spore germination. While much has been learned about nutrient germination, major questions remain unanswered, including the following. (i) How do nutrient germinants penetrate through spores'' outer layers to access GRs in the IM? (ii) What happens during the highly variable and often long lag period between the exposure of spores to nutrient germinants and the commitment of spores to germinate? (iii) What do GRs and GerD do, and how do these proteins interact? (iv) What is the structure of the SpoVA channel in spores'' IM, and how is this channel gated? (v) What is the precise state of the spore IM, which has a number of novel properties even though its lipid composition is very similar to that of growing cells? (vi) How is CLE activity regulated such that these enzymes act only when germination has been initiated? (vii) And finally, how does the germination of spores of clostridia compare with that of spores of bacilli?  相似文献   

7.
Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.  相似文献   

8.
The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca(2+)-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in cotE spores in which the spore coat is aberrant. These findings indicate the following: (i) the reason decoated and cotE spores germinate poorly with dipicolinic acid is the absence of CwlJ from these spores; and (ii) CwlJ is located in the spore coat, presumably tightly associated with one or more other coat proteins.  相似文献   

9.
Germination of Bacillus subtilis spores is normally initiated when nutrients from the environment interact with germinant receptors (GRs) in the spores'' inner membrane (IM), in which most of the lipids are immobile. GRs and another germination protein, GerD, colocalize in the IM of dormant spores in a small focus termed the “germinosome,” and this colocalization or focus formation is dependent upon GerD, which is also essential for rapid GR-dependent spore germination. To determine the fate of the germinosome and germination proteins during spore germination and outgrowth, we employed differential interference microscopy and epifluorescence microscopy to track germinating spores with fluorescent fusions to germination proteins and used Western blot analyses to measure germination protein levels. We found that after initiation of spore germination, the germinosome foci ultimately changed into larger disperse patterns, with ≥75% of spore populations displaying this pattern in spores germinated for 1 h, although >80% of spores germinated for 30 min retained the germinosome foci. Western blot analysis revealed that levels of GR proteins and the SpoVA proteins essential for dipicolinic acid release changed minimally during this period, although GerD levels decreased ∼50% within 15 min in germinated spores. Since the dispersion of the germinosome during germination was slower than the decrease in GerD levels, either germinosome stability is not compromised by ∼2-fold decreases in GerD levels or other factors, such as restoration of rapid IM lipid mobility, are also significant in germinosome dispersion as spore germination proceeds.  相似文献   

10.
In this study, we investigated the mechanisms of spore inactivation by high pressure at moderate temperatures to optimize the sterilization efficiency of high‐pressure treatments. Bacillus subtilis spores were first subjected to different pressure treatments ranging from 90 to 550 MPa at 40°C, with holding times from 10 min to 4 h. These treatments alone caused slight inactivation, which was related to the pressure‐induced germination of the spores. After these pressures treatments, the sensitivity of these processed spores to heat (80°C/10 min) or to high pressure (350 MPa/40°C/10 min) was tested to determine the pressure‐induced germination rate and the advancement of the spores in the germination process. The subsequent heat or pressure treatments were applied immediately after decompression from the first pressure treatment or after a holding time at atmospheric pressure. As already known, the spore germination is more efficient at low pressure level than at high pressure level. Our results show that this low germination efficiency at high pressure seemed not to be related either to a lower induction or a difference in the induction mechanisms but rather to an inhibition of enzyme activities which are involved in germination process. In fact, high pressure was necessary and very efficient in inducing spore germination. However, it seemed to slow the enzymatic digestion of the cortex, which is required for germinated spores to be inactivated by pressure. Although these results indicate that high‐pressure treatments are more efficient when the two treatments are combined, a small spore population still remained dormant and was not inactivated with any holding time or pressure level. Biotechnol. Bioeng. 2010;107: 876–883. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
One of the proteins of the membrane-bound receptors that recognize individual nutrients that trigger germination of spores of Bacillus subtilis contains the recognition sequence for diacylglycerol addition to a cysteine residue near the protein's N terminus. B. subtilis spores lacking the gerF (lgt) gene that codes for prelipoprotein diacylglycerol transferase exhibited significantly slowed germination in response to nutrient germinants as found previously, but germination of gerF spores with a mixture of Ca2+ and dipicolinic acid or with dodecylamine was normal, as was the spontaneous germination of gerF spores lacking all nutrient germinant receptors. The deleterious effects of the gerF mutation on nutrient germination were highest on germination triggered by the GerA nutrient receptor and were less so (but still significant) on germination triggered by the GerB nutrient receptor. However, there was little, if any, effect on GerK nutrient receptor-mediated spore germination. As predicted from the latter results, replacement by alanine of the cysteine residue to which diacylglycerol is thought to be added to these nutrient receptors had a large effect on GerA receptor function, less effect on GerB receptor function, and little, if any, effect on GerK receptor function.  相似文献   

12.
Two major low-molecular weight, acid-soluble proteins (termed A and B proteins) were purified from Bacillus sphaericus spores and had properties similar to those of the analogous proteins from spores of other Bacillus species. These proteins were accumulated late in sporulation, when the developing spores became resistant to UV light, and were degraded during spore germination by a spore protease. A mutant of B. sphaericus unable to make spore cortex because of a block in diaminopimelic acid (DAP) biosynthesis accumulated and maintained levels of the A and B proteins similar to those in the DAP+ parent or the DAP- strain in which cortex formation was restored by growth with DAP. In addition, the DAP- strain grown without DAP acquired a level of UV light resistance identical to that of wild-type spores and at the time of appearance of the A and B proteins. These findings indicate that formation of little, if any, spore cortex is required for acquisition of UV light resistance or maintenance of high levels of A and B proteins. The data provide further support for a role of the A and B proteins in the spore's UV light resistance.  相似文献   

13.
AIMS: To measure rates of release of small molecules during pressure germination of Bacillus subtilis spores, and the role of SpoVA proteins in dipicolinic acid (DPA) release. METHODS AND RESULTS: Rates of DPA release during B. subtilis spore germination with pressures of 150 or 500 megaPascals were much higher in spores with elevated levels of SpoVA proteins, and spores with a temperature-sensitive mutation in the spoVA operon were temperature-sensitive in DPA release during pressure germination. Spores also released arginine and glutamic acid, but not AMP, during pressure germination. CONCLUSIONS: Pressure germination of B. subtilis spores causes release of many small molecules including DPA. SpoVA proteins are involved in the release of DPA, perhaps because SpoVA proteins are a component of a DPA channel in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of pressure germination of spores of Bacillus species, a process that has significant potential for usage in the food industry.  相似文献   

14.
Germination of spores of Bacillus subtilis with dodecylamine   总被引:1,自引:0,他引:1  
AIMS: To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. METHODS AND RESULTS: Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS: These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.  相似文献   

15.
Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.  相似文献   

16.
Spore germination is the first step to Bacillus anthracis pathogenicity. Previous work has shown that B. anthracis spores use germination (Ger) receptors to recognize amino acids and nucleosides as germinants. Genetic analysis has putatively paired each individual Ger receptor with a specific germinant. However, Ger receptors seem to be able to partially compensate for each other and recognize alternative germinants. Using kinetic analysis of B. anthracis spores germinated with inosine and L-alanine, we previously determined kinetic parameters for this germination process and showed binding synergy between the cogerminants. In this work, we expanded our kinetic analysis to determine kinetic parameters and binding order for every B. anthracis spore germinant pair. Our results show that germinant binding can exhibit positive, neutral, or negative cooperativity. Furthermore, different germinants can bind spores by either a random or an ordered mechanism. Finally, simultaneous triggering of multiple germination pathways shows that germinants can either cooperate or interfere with each other during the spore germination process. We postulate that the complexity of germination responses may allow B. anthracis spores to respond to different environments by activating different germination pathways.  相似文献   

17.
家蚕微孢子虫孢壁蛋白与其发芽的相关性   总被引:3,自引:0,他引:3  
为了研究孢壁蛋白与家蚕微孢子虫发芽(孢原质弹出)的相关性,我们采用碳酸钾诱导微孢子虫体外发芽结合密度梯度离心的方法(简称GDGC法),收集纯化发芽后的孢子空壳(简称孢壳),对发芽液、纯化的孢壳及成熟孢子的孢壁蛋白组分进行了分析。结果表明:GDGC法可以获得高纯度孢壳,计算出其密度为1.130g/cm^3;与发芽前成熟孢子提取的孢壁蛋白相比,空孢壳可以提取到主要孢壁蛋白SWP32、SWP30、SWP25,同时发现SWP32、SWP25丰度有所降低;结合碳酸钾发芽液的蛋白电泳分析,发现孢壳上丰度降低的SWP32在发芽液蛋白样品中存在,LC—MS/MS数据分析也发现SWP32、SWP30、SWP25在碳酸钾处理液中都有存在;而用碳酸钾溶液处理冷冻孢子时,未观察到发芽现象,电泳结果显示此时K2CO,溶液中只有SWP30条带,说明在碳酸钾溶液诱导的发芽过程中SWP32和SWP25从孢壳上脱落可能与发芽相关而不是被碱性的碳酸钾溶解下来的[动物学报54(6):1068—1074,2008]。  相似文献   

18.
The outermost layer of the Bacillus anthracis spore is the exosporium, which is composed of a paracrystalline basal layer and an external hair-like nap. The filaments of the nap are formed by a collagen-like glycoprotein called BclA, while the basal layer contains several different proteins. One of the putative basal layer proteins is ExsY. In this study, we constructed a DeltaexsY mutant of B. anthracis, which is devoid of ExsY, and examined the assembly of the exosporium on spores produced by this strain. Our results show that exosporium assembly on DeltaexsY spores is aberrant, with assembly arrested after the formation of a cap-like fragment that covers one end of the forespore-always the end near the middle of the mother cell. The cap contains a normal hair-like nap but an irregular basal layer. The cap is retained on spores prepared on solid medium, even after spore purification, but it is lost from spores prepared in liquid medium. Microscopic inspection of DeltaexsY spores prepared on solid medium revealed a fragile sac-like sublayer of the exosporium basal layer, to which caps were attached. Examination of purified DeltaexsY spores devoid of exosporium showed that they lacked detectable levels of BclA and the basal layer proteins BxpB, BxpC, CotY, and inosine-uridine-preferring nucleoside hydrolase; however, these spores retained half the amount of alanine racemase presumed to be associated with the exosporium of wild-type spores. The DeltaexsY mutation did not affect spore production and germination efficiencies or spore resistance but did influence the course of spore outgrowth.  相似文献   

19.
Properties of Germinating Spores of Dictyostelium discoideum   总被引:9,自引:5,他引:4       下载免费PDF全文
The process of spore germination in Dictyostelium discoideum consists of three sequential stages: activation of dormant spores, swelling of activated spores, and emergence of myxamoebae from swollen spores. Dormant and activated spores are resistant to heating, freezing, or drying. Drying and freezing, moreover, may maintain the activated state until the spores are returned to normal conditions. Low temperature incubation after heat shock or the presence of an autoinhibitor will return activated spores to the dormant state. The entire spore germination process is aerobic, being inhibited at any point by oxygen deprivation or respiratory poisons. Each spore of this social organism appears to germinate at its own rate and independent of the other spores in the suspension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号