首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effects of cold stress on morphometrical and hematological biomarkers, energy metabolism, and oxidative stress in different tissues of P. mesopotamicus, and the protective role of β-carotene. Fish were fed with a control diet (CD) and the same diet supplemented with 105 mg/kg β-carotene (BD) for 60 days. After the feeding trial, fish fed CD or BD diets were exposed to control (24 °C) and low temperature (14 °C) for 24 h. Fish (CD and BD) exposed to thermal stress showed lower hepatosomatic index. The hemoglobin increased only in CD-fed fish exposed to 14 °C. Increased glycemia, plasmatic protein depletion, and decreased hepatic glycogen were observed in fish fed the CD, while only the lipid levels in liver were augmented in BD-fed fish exposed at 14 °C. Regarding the oxidative stress, increased antioxidant enzymes activity and lipid peroxidation were observed in CD-fed fish exposed to cold. The two-way ANOVA showed an interaction between dietary treatment and temperature for glucose and oxidative stress biomarkers, with the highest values recorded in 14 °C-exposed fish fed with the CD. Our study demonstrated that cold stress had the greatest impact on fish oxidative status, and β-carotene reduces harmful effects induced by cold in P. mesopotamicus.  相似文献   

2.
In this study we measured plasma cortisol, plasma glucose, plasma sodium and potassium, and liver and gill hsp70 levels in juvenile matrinxã (Brycon amazonicus) subjected to a 96 h exposure to phenol (0, 0.2, and 2.0 ppm), and the effect of this exposure on their ability to respond to a subsequent handling stress. Fish were sampled prior to initiation of exposure and 96 h, and at 1, 6, 12, and 24 h post-handling stress. During the 96 h exposure, plasma cortisol and glucose levels remained unchanged in all treatments. While plasma sodium levels were significantly reduced in all groups, plasma potassium levels only decreased in fish exposed to 0 and 0.2 ppm of phenol. Liver hsp70 levels decreased significantly at 96 h in fish exposed to 2.0 ppm of phenol. All groups, except fish exposed to 0.2 ppm of phenol, were able to increase plasma cortisol and glucose levels after handling stress. Fish exposed to 2.0 ppm of phenol showed decreased gill and liver hsp70 levels after the handling stress. Our data suggest that exposure to phenol may compromise the ability of matrinxã to elicit physiological responses to a subsequent stressor.  相似文献   

3.

The fluctuation in temperature adversely affects grain development when the climate changes intermittently. This study investigated the effect of high day/night temperatures (34/30 °C, 38/34 °C and 42/38 °C) for two stress durations (24 h and 48 h) on Triticum aestivum. To ascertain the role of plant growth regulator (PGR) in alleviating the deleterious effects of high temperature stress, the combination of various PGRs (e.g., methyl jasmonate, salicylic acid, ascorbic acid, calcium chloride and indole acetic acid) were foliar sprayed twice; one week prior to commencement of anthesis stage and immediately after the exposure to high temperature stress. In general, the high temperature reduces plant growth, grain setting, and 100-grain weight. High temperature stress causes deterioration of plant photosynthetic machinery through a significant decline in energy dissipation, linear electron flow (LEF) and quantum yield of photosystem II (Phi2) which led to plant death. An increase in the antioxidant enzymes activity (SOD, APX, and CAT) was observed at 38/34 °C, while their activity declined sharply at 42/38 °C. Grain setting and filling were completely inhibited in plants exposed to 42/38 °C even when treated with different combinations of PGRs. Salicylic acid along with methyl jasmonate was the most effective PGR combination resulting in significant improvements in Phi2, NPQt, SOD, grain filling and grain protein content under high temperature stress. A strong correlation was observed between LEF and chlorophyll contents against the number of grains per spike and 100-grain weight. In summary, acute day and night temperature stress adversely affected wheat morphological, physiological, and yield traits, while foliar application of PGRs was partially effective in mitigating these harmful changes.

  相似文献   

4.
To test the influence of the largest Central Amazon fish consumption centre on the potential fish population recruitment, young‐of‐the‐year (YOY) abundances of matrinxã Brycon amazonicus (Spix and Agassiz, 1829), jaraquis Semaprochilodus insignis (Jardine and Schomburgk, 1841), S. taeniurus (Valenciennes, 1821) and tambaqui Colossoma macropomum (Cuvier, 1818) were estimated in two floodplain areas of the middle Solimões‐Amazon River – one near the city of Manaus and the other 500 km from Manaus – in the 2007–2008 flooding. Matrinxã presented the highest abundance among the four species, with 87.8% of captured individuals. The difference was significant in the representation of YOY matrinxãs between the two studied areas, with the input more significant in the last months of flooding in the area 500 km from Manaus. Jaraquis represented 12.1% of captures and showed no difference between areas. Tambaqui abundance was shown to be critical in both areas, with the capture of only 28 YOY (0.1%), and with no differences between the two floodplains. Matrinxã and jaraquis are more likely to present stabile stocks in the middle Solimões‐Amazon River; on the other hand, matrinxã requires attention due to differences in the YOY input between the two areas and in their low input in the Upper Amazon River, near Manaus. Based on the present work and on the landing history in Manaus, tambaqui is still considered as under strong overexploitation, showing some of the characteristics of overfishing recruitment in the middle Solimões‐Amazon.  相似文献   

5.
Orange-spotted grouper Epinephelus coioides held at 27 °C were then further cultured at 19, 27 (control), and 35 °C, and were examined for innate cellular and humoral responses after 3–96 h. The total leucocyte count, respiratory burst, and phagocytic activity significantly decreased 3, 48, and 96 h after fish were transferred to 19 and 35 °C. Both the alternative complement pathway (ACH50) and the lysozyme activity significantly decreased at 3–96 h after fish were transferred to 19 and 35 °C. In another experiment, groupers reared at 27 °C at 34‰ salinity were injected with Vibrio alginolyticus grown in tryptic soy broth (TSB) at a dose of 2.3 × 109 colony-forming units (cfu) fish?1, and then further reared in water temperatures of 19, 27 (control), and 35 °C. The cumulative mortalities of V. alginolyticus-injected fish held in 19 and 35 °C were significantly higher than that of injected fish held in 27 °C. Resistance had decreased after 12 h for the challenged grouper held at 35 °C. All injected fish held in 19 °C had died after 72 h. It was concluded that at 12 h after transfer of grouper from 27 to 19 and 35 °C, immunity was suppressed and resistance against V. alginolyticus had decreased.  相似文献   

6.
The water temperature of aquacultures is a primary factor of fish welfare, reproductive patterns, and immunity. To elucidate the molecular and biological processes of the temperature modulation of reproduction and immunity, female Nile tilapia (190 ± 10g) were allocated into five groups following acclimatization (150 females, three replicates, each n = 10). Each group was subjected to various temperatures (28 °C, 30 °C, 32 °C, 34 °C, and 37 °C), the group at 28 °C representing the control. Their serum levels of estradiol, cortisol, and vitellogenin were measured as well as serum triiodothyronine (T3) hormone, thyroxine (T4) hormone, and non-specific immunity (phagocytic and lysozyme activity). In addition, steroidogenic acute regulatory protein (STAR), vitellogenin gene receptor, and heat shock protein 70 (HSP70) gene expression were evaluated. The serum levels of estradiol, cortisol, and vitellogenin markedly declined (P < 0.05) in fish group at higher temperatures. In addition to T3, T4 was significantly affected (P < 0.05) in the control group. The expressions of the STAR gene (steroidogenesis) and vitellogenin receptors were also considerably down-regulated. The histopathological photomicrograph of fish subjected to high water temperature revealed injuries in ovary tissues, demonstrating its harmful effects. The experimental results verified the possible role of water temperature as a main stressor on Nile tilapia’ physiology through modulation of steroidogenesis-related gene expression and immunity.  相似文献   

7.
Tuber borchii is an ectomycorrhizal ascomycete with a wide ecological range, which forms valuable fruit bodies (truffles). The effect of heat stress on the growth and morphology of ectomycorrhizas and mycelia of 11 T. borchii strains of different geographical and ecological provenance was evaluated. Mycelia and T. borchii-colonized plants were differentially grow at 22 °C, 28 °C and 34 °C. Further, the expression of two genes involved in stress response was also analysed in strains showing a different growth response to the high temperatures. Four out of 11 strains were classified as tolerant to heat stress based on their ability to grow and form mycorrhizas at 28 °C as at 22 °C. Only one strain seemed to show a high-temperature induced quiescence and survived after exposure at 34 °C. The expression of the genes considered in this work seems to be related to the level of heat stress tolerance in a strain.  相似文献   

8.
Climate changes, particularly the increase of temperature are among the main causes behind the decline of fertility in humans as well as animals. In this study, the effects of heat stress on some reproductive parameters of male cavies and mitigation strategies using guava leaves essential oil (GLEO) were studied. For this purpose, 40 male cavies aged 2.5–3 months and weighing between 348 and 446 g were divided into 4 groups of 10 animals each and subjected to the following temperatures: Ambient temperature (20–25 °C) for the control group, 35 °C for group 1, 45 °C for group 2 and 45 °C+100 µl GLEO/kg body weight, administered by gavage to animals for group 3. Exposure time of heat was 7 h per day for 60 days. Results reveal that the relative weights of testes, epididymis, vas deferens and seminal vesicles were hardly affected by the temperature levels considered (P>0.05). The mass and individual sperm motility was significantly lower (P<0.05) in cavies exposed to the temperature of 35 and 45 °C as compared with those which received GLEO and controls. The percentages of abnormal sperm and altered sperm DNA were higher in animals exposed to temperature of 35 and 45 °C as compared with the controls. The activity of superoxide dismutase significantly increased (P<0.05) in animals exposed to temperature of 45 °C and in those of 45 °C and orally treated with GLEO, compared with cavies exposed to temperature of 45 °C without receiving GLEO. The level of malondialdehyde was significantly increased (P<0.05) in animals exposed to temperature of 35 and 45 °C, whereas the level of nitric oxide was significantly lower (P<0.05) in exposed animals as compared with controls. It was concluded that the exposure of male cavies at 35 and 45 °C for 60 days induce heat stress that causes deterioration of sperm characteristics. These effects that can be mitigated by the administration of guava leaves essential oil.  相似文献   

9.
The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).  相似文献   

10.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

11.
Temperature tolerances (including lethal limits) and associated rates of thermal acclimation of fish are critical information in predicting fish responses to global climate changes. In this study, a partial sequence of the heat shock protein 70 gene (HSP70) from the fish species Channa striatus was isolated and characterized. Evolutionary process that led to the diversity of HSP70 specific to vertebrates was also analysed. Results revealed that HSP70 is highly homologous in other fish families. The conservation of the HSP 70 gene among fish families could be driven by forces of natural selection due to climatic change. We exposed C. striatus to heat shock (32 °C) and cold shock (16 °C) respectively, in order to examine the differences of temperatures in influencing the expression patterns of HSP70. We revealed that expression of HSP70 was higher at 32 °C than at 16 °C in most of the organs. Specifically, occurrence of chaperone activity of HSP70 was found at low temperature. Therefore, this fish was postulated that to seems to be able to survive at lower temperature compared to higher temperature indicating there is force of natural selection acting towards this HSP 70 gene. This will demonstrate the effect of global warming towards the fish survivability.  相似文献   

12.
Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5–7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1–2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.  相似文献   

13.
Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damselfishes and two species of cardinal fishes were held for 14 days at 29, 31, 33, and 34 °C, which incorporated their existing thermal range (29–31 °C) as well as projected increases in ocean surface temperatures of up to 3 °C by the end of this century. Resting and maximum oxygen consumption rates were measured for each species at each temperature and used to calculate the thermal reaction norm of aerobic scope. Our results indicate that one of the six species, Chromis atripectoralis, is already living above its thermal optimum of 29 °C. The other five species appeared to be living close to their thermal optima (ca. 31 °C). Aerobic scope was significantly reduced in all species, and approached zero for two species at 3 °C above current‐day temperatures. One species was unable to survive even short‐term exposure to 34 °C. Our results indicate that low‐latitude reef fish populations are living close to their thermal optima and may be more sensitive to ocean warming than higher‐latitude populations. Even relatively small temperature increases (2–3 °C) could result in population declines and potentially redistribution of equatorial species to higher latitudes if adaptation cannot keep pace.  相似文献   

14.
Increase in water temperature due to anthropogenic and climatic changes is expected to affect physiological functions of fish. In this study, we determined high temperature tolerance (CTmax) of a common aquacultured Indian major carp, rohu, Labeo rohita fingerlings (15.96 ± 0.72 g BW, 11.56 ± 0.42 cm TL) followed by acclimatization at three temperatures (30, 33, 36 °C). To determine the CTmax, we analyzed the major hemato-biochemical indices - hemoglobin (Hb), red blood cell (RBC), white blood cell (WBC), blood glucose levels, and erythrocytic nuclear abnormalities (ENAs) and erythrocytic cellular abnormalities (ECAs) of peripheral erythrocytes in the fish sampled at the start and end point at each acclimated temperature. Significantly decreased CTmax of the fish was found at 36 °C compared to 30 °C and 33 °C. The fish in the highest (36 °C) temperature were found with significantly lower Hb and RBC content and significantly higher WBC and blood glucose levels than that of the fishes in the lowest (30 °C) temperature both at the start and end points. The highest frequencies of ENAs and ECAs were found in the highest (36 °C) temperature group compared to the lowest (30 °C) temperature group at both the points. We also evaluated growth performance of the rohu fingerlings reared in the three temperatures for 60 days. The growth parameters - final weight gain, percent weight gain and specific growth rate were the highest at 33 °C and the lowest at 36 °C. The present study revealed that the highest temperature (36 °C) tested here may be hazardous to rohu and the temperature should be kept below 36 °C in the aquaculture setting to avoid physiological damage and growth and production loss to the fish.  相似文献   

15.
This study aimed to investigate temperature effect on physiological and biochemical responses of the marine medaka Oryzias melastigma larvae. The fish were subjected to a stepwise temperature change at a rate of 1 °C/h increasing or decreasing from 25 °C (the control) to six target temperatures (12, 13, 15, 20, 28 and 32 °C) respectively, followed by a 7-day thermal acclimation at each target temperature. The fish were fed ad libitum during the experiment. The results showed that cumulative mortalities were significantly increased at low temperatures (12 and 13 °C) and at the highest temperature (32 °C). For the survivors, their growth profile closely followed the left-skewed ‘thermal performance curve’. Routine oxygen consumption rates of fish larvae were significantly elevated at 32 °C but suppressed at 13 and 15 °C (due to a high mortality, larvae from 12 °C were not examined). Levels of heat shock proteins and activities of malate dehydrogenase and lactate dehydrogenase were also measured in fish larvae exposed at 15, 25 and 32 °C. The activities of both enzymes were significantly increased at both 15 and 32 °C, where the fish larvae probably suffered from thermal discomfort and increased anaerobic components so as to compensate the mismatch of energy demand and supply at these thermal extremes. Coincidently, heat shock proteins were also up-regulated at both 15 and 32 °C, enabling cellular protection. Moreover, the critical thermal maxima and minima of fish larvae increased significantly with increasing acclimation temperature, implying that the fish could develop some degrees of thermal tolerance through temperature acclimation.  相似文献   

16.
Length‐weight relationship parameters were calculated for six fish species from São Marcos Bay, in Northeast Brazil (the segment between 02°35′55″S and 44°20′58″W; 02°34′53″S and 44°21′48″W; 02º42′25″S and 44º26′46″W). The specimens were caught quarterly from April 2010 to February 2013, using monofilament gillnets (2, 4 and 6 cm between knots) from 100 m to 3,000 m long and 4 m to 6 m high. The present study covers a much wider size range for four species and adds new information for the maximum length of Notarius bonillai.  相似文献   

17.
Some fish species, such as killifish, that normally inhabit temperate water environments are also found in extreme thermal environments such as thermal springs. The extent of the adaptations involved is not known. In the present laboratory study, we exposed killifish (Aphanius dispar) acclimated to a normal thermal environment to elevated temperatures (37–40 °C) in which related killifish species live permanently. Our objective was to determine whether there is evidence that killifish have heat-shock characteristics that make permanent adaptation likely. The fish was exposed to this temperature for a period of 44 days and then compared with control fish kept at their normal temperature (24 °C) with respect to growth, survival and histopathology of gill and heart tissues. At the end of the experimental time, the percentage of body weight gain and specific growth rate were significantly lower in fish kept in thermal stress compared with the control group. Feed conversion ratio (FCR) was also significantly affected by water temperature, so that during thermal stress the values of FCR were negative. Fish condition (Condition factor: CF) did not differ significantly between both groups at the end of the experiment. On days 11 and 33, however, CF was significantly lower in the thermal stress group. The gill showed blood congestion in primary lamellae and shortened secondary lamellae in fish kept at 37–40 °C. No specific alterations were found in the cardiac tissue of fish kept in thermal stress conditions. Under thermal stress, 40% of fish survived until the end of the experiment. A preliminary conclusion drawn from this work is that A. dispar, which lives at normal temperatures, shows evidence of adaptability to elevated temperatures that could be a factor in the ability of killifish to adapt permanently over time to thermal environment.  相似文献   

18.
We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26 °C), 31, 33 and 36 °C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36 °C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36 °C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36 °C, and in brain and muscle at 36 °C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33 °C or higher temperature.  相似文献   

19.
Emerging evidence has shown that acute heat exposure affects metabolic characteristics and causes oxidative damage to skeletal muscle in birds. Little is known, however, about such phenomena under chronic heat stress conditions. To address this, we designed the present study to determine the influence of cyclic (32 to 24 to 32 °C: 32 °C for 8 h/d, 32–24–32HS ), and constant (32 and 34 °C, 32HS and 34HS, respectively) heat exposure on the metabolic and peroxide status in skeletal muscle of 4-wk-old male broiler chickens. Heat stress, particularly in the 32HS and 34HS groups, depressed feed intake and growth, while cyclic high temperature gave rise to a less severe stress response in performance terms. Malondialdehyde (MDA) levels in skeletal muscle were enhanced (P < 0.05) by constant heat treatment; the degree of enhancement was not as large as the changes observed in our previous ‘acute’ heat stress model. The 3HADH (3-hydroxyacyl CoA dehydrogenase related to fatty acid oxidation) and CS (citrate synthase) enzyme activities were lowered (P < 0.05) by both the cyclic and constant 34HS treatments, and constant 34HS group, respectively. These results suggest that chronic heat exposure decreases metabolic oxidation capacity in skeletal muscle of broiler chickens. On exposure to chronic heat stress, GPx activity remained relatively constant, though a temperature-dependent elevation in Cu/Zn-SOD activity was observed, implying that anti-oxidation ability was disturbed by the chronic stress condition. From these results it can be concluded that chronic heat stress did not induce oxidative damage to a major extent. This may probably be due to a decrease in metabolic oxidation capacity or due to a self-propagating scavenging system, though the system was not fully activated.  相似文献   

20.
Schizopygopsis younghusbandi is an endemic fish of Tibet characterized by slow growth. Artificial stock enhancement was applied to rebuild the natural population of S. younghusbandi in recent years. However, the optimal growth temperature and thermal tolerance of S. younghusbandi has not been studied, which restricts the production of S. younghusbandi fingerling for stock enhancement. The purpose of this paper is to determine the growth, critical thermal maximum (CTMax), lethal thermal maximum (LTMax) and acclimation response ratio (ARR) of S. younghusbandi juveniles (body weight 5.7 ± 1.2 g) at three acclimation temperature levels (10, 15, 20°C). The results showed that acclimation temperature significantly affected the growth, CTMax, LTMax and ARR of the experimental fish. Largest final weight (7.5 ± 2.3 g) was recorded in 15°C group. At a heating rate of 1°C/30 min, CTMax ranged from 30.98 to 32.01°C and LTMax ranged from 31.76 to 32.31°C in the three acclimation temperatures. Schizopygopsis younghusbandi had lower ARR value (0.097) than most other fish species. Low ARR value indicates that S. younghusbandi may have narrower thermal tolerance range and weaker acclimation ability to global warming. For successful aquaculture of S. younghusbandi juveniles, temperature should be maintained around 15°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号