首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pepper  V. A.  Nicholls  T.  Oliver  N. P. 《Hydrobiologia》1992,243(1):249-259
Results of experiments on controlled releases of fall-fingerling Atlantic salmon to lacustrine habitats in Newfoundland are reviewed in terms of survival during freshwater residence and smolt yield per unit of standing water habitat. Average survival from parr to smolt in three consecutive annual releases was 12.9% and we conclude that the quality of fall-fingerling salmon, produced from our semi-natural rearing techniques, was satisfactory. Year-class survival decreased progressively with consecutive releases. Rate of increase in juvenile salmon biomass remained stable over the duration of the study, suggesting that the average annual biomass of 1.6 kg ha–1 of juvenile salmon released did not exceed habitat carrying capacity. Precocity did not appear to represent a significant deterrent to fall-fingerling survival. Annual smolt yield (by year-class) from stocking ranged from 53 to 130 ha–1 (mean = 77 smolts ha–1).  相似文献   

2.
The Kaouk River estuary is located on the northwest coast of Vancouver Island, British Columbia, Canada, in the Treaty Settlement Lands of the Ka:'yu:'k't'h'/Che:k'tles7et'h First Nations. Stretching across the widest point of this estuary is a causeway providing road access to Fair Harbour. This causeway was observed to decrease habitat connectivity throughout the estuary, specifically limiting juvenile salmon access to high‐quality rearing habitat in the tidal marsh. As such, the causeway was breached in 2019 and a bridge was installed. Juvenile salmon were observed using the new connection and were captured both up and downstream of the causeway immediately following breaching. Postbreach water chemistry (dissolved oxygen, pH, salinity, and temperature) near the causeway was recorded within the range of values observed throughout the estuary. Use of the breach by juvenile salmon and homogenized water chemistry indicate the project succeeded in improving habitat connectivity within the Kaouk River estuary and has enhanced juvenile salmon access to 2.7 km2 of wetland rearing habitat.  相似文献   

3.
4.
The effect of physical river habitat variables on the distribution of juvenile Atlantic salmon Salmo salar L. in the Rivière de la Trinité, Québec, Canada, was examined using generalized additive modelling. A survey of Atlantic salmon fry and parr densities and habitat variables (flow velocity, water column depth and substratum size) was conducted in the summer months from 1984 to 1992. Clear patterns of habitat use existed: specific ranges of habitat variables were selected, with parr preferring greater velocities, depths and substratum sizes than fry. There was a large variation, however, in juvenile densities for given velocities, depths or substratum sizes, with this variation being greatest in optimal habitats. On examination of an individual year, interaction between the variables was found to explain some of the variation. On a year‐to‐year basis the juvenile Atlantic salmon population was found to exhibit an 'Ideal Free Distribution', which resulted in greatest variation in optimal habitats with year‐to‐year changes in population abundance.  相似文献   

5.
Climate change models predict a 2 to 6° C increase in air temperature within the next 100 years in the Maritime Provinces of eastern Canada. Higher air temperatures are expected to contribute to increased water temperatures, alterations in stream flow conditions, and ultimately reductions in fish growth. Mean annual size-at-age of juvenile Atlantic salmon Salmo salar decreased in the Northwest Miramichi and Southwest Miramichi Rivers between 1971–1999. Lengths-at-age of juveniles were significantly correlated between the two rivers. For Atlantic salmon parr, stronger associations between inter-cohort fork length ( L F) than intra-cohort L F were observed, suggesting that environmental conditions in the current year of growth have the more significant effects on size of age 2 year parr than conditions encountered the previous year by age 1 year parr of the same cohort. Fork lengths of parr were significantly and negatively associated with spring air and water temperatures. In the Miramichi River, increases in air and water temperature as predicted from climate change models may adversely affect growth of juvenile Atlantic salmon parr, reducing the overall productivity of the Atlantic salmon populations in this region.  相似文献   

6.
In insular Newfoundland, Canada, studies were conducted from 1999 to 2003 on the effects of ‘simulated’ hydropeaking power generation on juvenile Atlantic salmon (Salmo salar). In 1999, Atlantic salmon parr were released into an experimental reach below a hydroelectric facility and flow was manipulated over a range of discharge (1.0–4.2 m3 s−1) during a series of ‘experiments’ simulating hydropeaking in both summer and fall. Fish were implanted with radio transmitters, manually tracked, precisely located (±1 m), habitat selection evaluated, and movement response determined. Experiments were continued in 2002 and 2003 to contrast response of salmon between summer and winter, the magnitude of flow changes were greater (0.7–5.2 m3 s−1) and changes were made more rapidly (instantly). As discharge was increased, velocity and depth use by parr increased, and fish adapted behaviourally by increased contact with the substrate. Salmon parr also exhibited two distinct movement patterns in the summer and fall of 1999 studies; high site fidelity or considerable movement during trials. Salmon were more mobile during both static and dynamic flow conditions and throughout the diel cycle in the summer of 2002 experiment, and 2 fish were stranded and died, the only time this happened in the four series of experiments. Within each experiment generally there were no differences between movements at static high and low flows for day and night movements, with one exception, and night time movements were always greatest, again with one exception. During dynamic flow changes, within each experiment, distances moved during down ramping and up ramping were not significantly different except in the summer of 1999. Overall, comparing between experiments for up and down ramping events, distances moved in the summer of 2002 were statistically higher than for all other experiments. Not surprisingly, the home ranges of fish in the summer of 2002 were also the greatest while the smallest home ranges were in the winter of 2003. Results suggest hydropeaking regimes may be energetically costly potentially affecting over-winter survival which is related to energy reserves obtained during summer. Collectively these studies provide comprehensive information on the response of juvenile Atlantic salmon parr to hydropeaking, on both diel and seasonal scales, and will assist hydro producers and regulators design and operate hydropeaking regimes to minimize ecological impact. Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood Control and Water Abstraction: Implications for Fish and Fisheries  相似文献   

7.
Anadromous Atlantic salmon parr (Salmo salar) were captured from three Newfoundland lakes. Yearling and 2 year parr were captured most often in shallow water <2 m deep around lake perimeters and were not abundant at greater depths. The 3+ and 4+ parr age groups were rarely found inshore (<2 m) but were captured in deeper offshore areas. Though the parr population in one deep lake was too small to be estimated by mark-recapture, estimates of the yearlings plus 2+ age groups in two shallower lakes were 55 and 63 parr ha−1. respectively. No under yearlings were found in lake habitats. Parr density in the three study lakes varied inversely with mean lake depth. Lacustrine parr growth rate was greater than or equal to that of stream dwelling parr. It is concluded that some shallow lakes of Newfoundland provide major rearing areas for juvenile anadromous Atlantic salmon.  相似文献   

8.
Summary Fluvial salmonids have evolved to use the diversity of habitats in natural streams for different life history stages and at different seasons. Required freshwater habitat of Atlantic salmon can be classified generally as that suitable (i) for spawning, (ii) for feeding during the major growing period, and (iii) for overwintering.Spawning habitat of salmon is usually in rapid water at the tail of pools on the upstream edge of a gravel bar, ideally with depths about 25 cm, in mean water velocities of about 30–45 cm s-1, with maximum velocities about 2 body lengths s-1, and with a substrate of irregularly shaped stones of cobble, pebble, and gravel.Underyearling salmon (<7 cm TL) are most common in shallow (<15 cm) pebbly riffles, whereas older and larger parr (>7 cm TL) are usually in riffles deeper than 20 cm with a coarse substrate. Depth preference increases with size. Multiple linear regression models quantifying parr habitat have identified substrate as an important variable, with a positive relationship to an index of coarseness. Negative relationships were found with mean stream width, range of discharge, and overhanging cover. Water chemistry, especially alkalinity, nitrates, and phosphates, are important regulators of production. Although similar variables had importance, coefficients among rivers differed. Interactions occur among variables. Further studies are required to quantify productive capacity of habitat for parr. Results suggest that useful models can be derived and if a river system is mapped, and stratified by habitat, then smolt yield could be predicted and the required egg deposition could be estimated.In winter, young salmon shelter among coarse substrate or move to pools, but continue feeding, with larger parr being more active.Feeding is in general opportunistic. Food consists mainly of insects, taken primarily in the water column, but also from the surface and at the bottom. Young salmon in flowing water are highly territorial but are less so in slow or still waters. In fast water, parr use their large pectoral fins to apply themselves to the substrate, allowing them to occupy this type of habitat with little expenditure of energy. Height above the substrate decreases with water velocity, but increases with temperature and social status. Although riffles are preferred habitat, and are relatively more productive, lentic waters can be occupied where there are few predators or severe competitors and may provide significant smolt yield in some systems. Selective segregation minimizes competition between salmon and brook charr or brown trout, but brook charr and brown trout may have negative effects on underyearling salmon, and on parr in pools, whereas salmon have negative effects on small brook charr and brown trout in riffles and flats. Competition by both interference and exploitation results in interactive segregation when the resource, mainly food, becomes limiting.Limited downstream movement of underyearling salmon may occur during the summer. Older juveniles may make upstream movements, but generally migrate downstream, with most movements in the spring, and a lesser peak of activity in the autumn. Dispersal tends to be mainly downstream, indicating that for full distribution, spawning areas are best located upstream. High densities of yearling parr may have negative effects on growth and survival of underyearlings in some river systems, but apparently not in others, so that future research is required in this regard. Density-dependent growth is evident where food is limiting, and can provide an indicator of densities of cohorts so that if a quantitative relationship has been derived, mean size from a sample can give an estimate of the density at that station, with minimum size occurring at carrying capacity. Such regressions vary between habitats with differing productive capabilities, so that future research could provide useful models for assessing productive capacity of a habitat, and optimum densities. Life history strategies can change with changes in density-dependent growth rates. Present stock-recruitment functions do not take environmental variables into consideration, and have limited applicability. Further research is required to determine optimum spawning requirements for salmon in different types of river systems in different geographical areas.  相似文献   

9.
Einum S  Nislow KH  McKelvey S  Armstrong JD 《Oecologia》2011,167(4):1017-1025
Competitive effects of younger cohorts on older ones are frequently assumed to be negligible in species where older, larger individuals dominate in pairwise behavioural interactions. Here, we provide field estimates of such competition by recruits on an older age class in Atlantic salmon (Salmo salar), a species where observational studies have documented strong body size advantages which should favour older individuals in direct interactions. By creating realistic levels of spatial variation in the density of underyearling (YOY) recruits over a 1-km stretch of a stream, and obtaining accurate measurements of individual growth rates of overyearlings (parr) from capture–mark–recapture data on a fine spatial scale, we demonstrate that high YOY density can substantially decrease parr growth. Models integrating multiple spatial scales indicated that parr were influenced by YOY density within 16 m. The preferred model suggested parr daily mass increase to be reduced by 39% when increasing YOY density from 0.0 to 1.0 m−2, which is well within the range of naturally occurring densities. Reduced juvenile growth rates will in general be expected to reduce juvenile survival (via increased length of exposure to freshwater mortality) and increase generation times (via increased age at seaward migrations). Thus, increased recruitment can significantly affect the performance of older cohorts, with important implications for population dynamics. Our results highlight that, even for the wide range of organisms that rely on defendable resources, the direction of competition among age classes cannot be assumed a priori or be inferred from behavioural observations alone.  相似文献   

10.
A critical challenge for ecologists is to understand the functional significance of habitat heterogeneity and connectivity for mobile animals. Here, we explore how a thermo-regulating fish responds to annual variation in the spatial patterning of thermal and trophic resources. In a third-order stream in coastal Alaska, juvenile coho salmon forage on sockeye salmon eggs at night in cold water and then move to warmer water to increase their digestive capacity. We mapped the spatial distributions of water temperature, juvenile coho salmon, and spawning sockeye salmon across a 5-year period during which summer discharge varied by greater than fivefold. In low flow years, warm water (9–12°C) was only available in thalweg (that is, main-channel) habitat at least approximately 400 m upstream of the cooler habitat (3–7°C) where sockeye salmon spawned. In high flow years, the entire stream thalweg was isothermal at 7–8°C, but inundated off-channel areas generated warm habitats (9–12°C) laterally adjacent to the downstream regions where sockeye salmon spawned. The daytime spatial distribution of juvenile coho salmon shifted from headwater thalweg habitats in low flow years, to downstream off-channel habitats in high flow years. In all years, the majority of juvenile coho salmon sampled during the daytime were found in warm habitat units without sockeye salmon present, yet they exhibited diet contents comprised virtually entirely of sockeye salmon eggs. Thus, thermoregulatory movements by coho salmon were able to track an annually shifting mosaic of water temperature. Our results demonstrate how the spatial habitat heterogeneity and connectivity of intact floodplains can in turn buffer aquatic organisms from high levels of temporal variation in habitat conditions and resource abundance.  相似文献   

11.
Winter concealment habitat quality was assessed and its use by juvenile spring Chinook salmon (Oncorhynchus tshawytscha) quantified in three hatching areas of the Grande Ronde River Basin, Oregon USA. Fish densities were significantly higher in pools with a higher winter concealment habitat index than pools with a lower index. The mean fork length and mean growth rate of fish did not differ between pools with a higher or lower winter concealment habitat index, even though residual fish were significantly larger than fish that emigrated. Biomass–density was significantly higher in pools with a higher winter concealment habitat index than pools with a lower index in all three hatching areas. Biomass–density was positively associated with the amount of cobble substrate (10–24.9 cm/m2) in all three hatching areas, and inversely associated with embeddedness in two of the hatching areas. Results of this study indicate that enhancing winter concealment habitat could improve habitat quality resulting in increased carrying capacity and winter usage by juvenile spring Chinook salmon. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. A. Cambray  相似文献   

12.
The relations between allozyme heterozygosity, relative date of first feeding and life history strategy in juvenile Atlantic salmon Salmo salar were examined using eggs obtained from a 400 family cross (20 male × 20 female adult Atlantic salmon). Multilocus heterozygosity, through its positive associations with the timing of first feeding and growth rate, was correlated with life history strategy in juvenile Atlantic salmon, albeit under genotype × environmental (temperature, food availability) regulation. Under hatchery conditions, a 10 day difference was observed in the relative date of first feeding between early and late first feeding Atlantic salmon. Early first feeding Atlantic salmon exhibited a significantly higher mean heterozygosity, grew faster at ambient water temperature (April to November) and a significantly higher proportion adopted the early freshwater maturation (age 0+ years, male fish) or early migrant (age 1+ years, mainly female fish) strategies compared to late first feeding Atlantic salmon. Elevated water temperatures over the winter (December to April, >10·5° C) provided additional growth opportunity allowing previously mature male parr (mainly early first feeders) and lower modal group parr (mainly late first feeders) to adopt the early migrant strategy by the following spring.  相似文献   

13.
The effect of anchor‐ice dams on the physical habitat and behavioural responses of Atlantic salmon Salmo salar parr in a small, steep stream was investigated. Anchor‐ice dams formed periodically, leading to a dynamic winter environment as the study reach alternated between riffle and walk dominated habitat. Parr demonstrated large individual variation in habitat use, utilizing most of the wetted stream width, and were generally unaffected by diel changes in the mesohabitat composition. Furthermore, parr displayed high site fidelity in areas with low embedded substrata, and demonstrated few large movements between the three mesohabitat classes present: shallow riffle, walk and pool. Findings from this study question the importance of hydraulic variables such as water depth, flow velocity and dynamic ice formation as single habitat features for juvenile stream salmonids during winter and emphasize the importance of access to substratum cover.  相似文献   

14.
Smolt traits (length, age) and timing of smolt migration of wild Atlantic salmon, Salmo salar L., were investigated in the Simojoki River, northern Baltic Sea. The aim was to determine whether they responded to changes in parr length, parr density and temperature from 2000 to 2014. Annual electrofishing surveys and smolt numbers determined parr densities by springtime trapping in the river mouth. During the smolt trapping period captured parr and smolts were aged from scales. Water temperature was measured daily. Mean length decreased from 137 mm (TL) to 129 mm among 2‐year‐old smolts, and from 150 mm to 139 mm among 3‐year‐olds. Median date of the smolt migration was 10 days earlier, from early June to late May during the study period, linked to the rise in air temperature in May at the nearby Kemi‐Tornio airport. However, the median day temperature and the mean daily water temperatures during the second (Q2) and third (Q3) migration quartiles did not change. This implied that migration began when a suitable water temperature was reached, independent of the date.  相似文献   

15.
Behavioural changes that occur during the parr–smolt transformation were investigated in juvenile coho salmon Oncorhynchus kisutch. Fish from two populations were examined from the Fraser River catchment in British Columbia, Canada; a short and a long-distance migrating population. Fish showed a significant decrease in condition factor and significant increase in gill Na+K+-ATPase activity during the spring indicating that they became competent smolts, but no difference between populations. Temperature preference trials were conducted using a shuttlebox system throughout the spring. Mean temperature preference did not differ between the two populations, but preferred temperature decreased with development from 16.5 ± 0.3°C for parr to 15.5 ± 0.4°C for smolts. Mean swimming velocity was also greater in smolts than parr, but there was no difference between the two populations. The preference for warmer water temperature observed for parr in early spring may be advantageous for stimulating smolt development. Preference for slightly cooler temperatures observed for smolts would sustain elevated seawater tolerance during the smolt window by a short time and may ensure successful transition to the marine environment.  相似文献   

16.
Migrations of juvenile Atlantic salmon between habitats (both fluvial and lacustrine) were studied in a Newfoundland river system from May through September. Salmon parr showed poor site fidelity in fluvial habitats, and high rates of migration, especially in spring-early summer. Most habitat shifts were upstream from fluvial habitats to a lake at the head of a small tributary. In September, 10% of the salmon parr caught in the lake ( n =275) had been marked in the main stem of the river or in the tributary stream (total n =641). The abundance of parr in the lake increased in May-June, then declined gradually to September. Most of the lacustrine immigrants were 1+ parr. Mature males were found amongst the autumnal emigrants. Salmon parr in the lake grew larger than those in the river, and lacustrine smolts captured in the lake were larger than those caught at the mouth of the river.  相似文献   

17.
Juvenile Coho Salmon undergo many physiological changes during their springtime transformation from a freshwater parr to a migratory, seawater-capable smolt. Although field observations indicate smolts moving towards the surface and across the breadth of their streams to either swim or drift downstream with the current, water-velocity preferences of these developing cohos are unknown. Using video analysis of their swimming patterns in a calibrated, laboratory flow table with a velocity gradient, groups of three cohos generally increased their preferred water velocity through the springtime study period, to a late-May peak (daytime data, change-point regression analysis, p < 0.05) and over the entire period (nighttime data, regression analysis, p < 0.05). Moving to swifter currents should facilitate the downstream movements of these young cohos, as they develop through the parr-smolt transformation period. This information should assist managers of regulated watersheds and salmon hatcheries in optimizing juvenile salmon survival (e.g., with timely, late-spring water releases producing 0.1–0.3 m s−1 downstream water velocities).  相似文献   

18.
19.
1. Movements and habitat use by Atlantic salmon parr in Catamaran Brook, New Brunswick, were studied using Passive Integrated Transponder technology. The fish were tagged in the summer of 1999, and a portable reading system was used to collect data on individual positions within a riffle‐pool sequence in the early winter of 1999. Two major freezing events occurred on November 11–12 (Ice 1) and November 18–19 (Ice 2) that generated significant accumulations of anchor ice in the riffle. 2. Individually tagged parr (fork length 8.4–12.6 cm, n = 15) were tracked from 8 to 24 November 1999. Over this period, emigration (40%) was higher from the pool than from the riffle. Of the nine parr that were consistently located, seven parr moved <5 m up‐ or downstream, and two parr moved more than 10 m (maximum 23 m). Parr moved significantly more by night than by day, and diel habitat shifts were more pronounced in the pool with some of the fish moving closer to the bank at night. 3. During Ice 2, there was relatively little movement by most of the parr in the riffle beneath anchor ice up to 10 cm in thickness. Water temperature was 0.16 °C above the freezing point beneath anchor ice, suggesting the existence of suitable habitats where salmon parr can avoid supercooling conditions and where they can have access to low velocity shelters. To our knowledge, these are the first data on habitat use by Atlantic salmon parr under anchor ice.  相似文献   

20.
Synopsis Juvenile Atlantic salmon of the Pigou and Bouleau Rivers, Quebec, were studied during the summer of 1972 and 1973. Growth increments for Pigou salmon averaged 36–50 mm yr–1 and smolts averaged 2.9 yrs old. Bouleau salmon grew slower (26–41 mm yr–1) and became smolts at a slightly older mean age (3.1 yrs). Mature male parr were more abundant in all age-groups from the Plgou River, possibly because of the faster growth. In terms of management, the Pigou River has little potential for increased salmon production because of limited habitat. On the other hand, the Bouleau River has considerable potential, and salmon production could be increased if the upper reaches were made accessible to migrating salmon.Contribution number 36 of the Matamek Research Station, Woods Hole Oceanographic Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号